524e4d0e65
1、修正语音和文字的交互逻辑; 2、提供funasr的可选集成。
199 lines
7.2 KiB
Python
199 lines
7.2 KiB
Python
import asyncio
|
|
import websockets
|
|
import time
|
|
from queue import Queue
|
|
import threading
|
|
import argparse
|
|
import json
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.logger import get_logger
|
|
import logging
|
|
import tracemalloc
|
|
import functools
|
|
tracemalloc.start()
|
|
|
|
logger = get_logger(log_level=logging.CRITICAL)
|
|
logger.setLevel(logging.CRITICAL)
|
|
|
|
|
|
websocket_users = set() #维护客户端列表
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--host",
|
|
type=str,
|
|
default="0.0.0.0",
|
|
required=False,
|
|
help="host ip, localhost, 0.0.0.0")
|
|
parser.add_argument("--port",
|
|
type=int,
|
|
default=10197,
|
|
required=False,
|
|
help="grpc server port")
|
|
parser.add_argument("--model",
|
|
type=str,
|
|
default="./data/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404",
|
|
help="model from modelscope")
|
|
parser.add_argument("--vad_model",
|
|
type=str,
|
|
default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
|
help="model from modelscope")
|
|
parser.add_argument("--punc_model",
|
|
type=str,
|
|
default="",
|
|
help="model from modelscope")
|
|
parser.add_argument("--ngpu",
|
|
type=int,
|
|
default=1,
|
|
help="0 for cpu, 1 for gpu")
|
|
|
|
args = parser.parse_args()
|
|
|
|
print("model loading")
|
|
# asr
|
|
param_dict_asr = {}
|
|
param_dict_asr['hotword']="data/hotword.txt"
|
|
inference_pipeline_asr = pipeline(
|
|
task=Tasks.auto_speech_recognition,
|
|
model=args.model,
|
|
param_dict=param_dict_asr,
|
|
ngpu=args.ngpu
|
|
)
|
|
if args.punc_model != "":
|
|
# param_dict_punc = {'cache': list()}
|
|
inference_pipeline_punc = pipeline(
|
|
task=Tasks.punctuation,
|
|
model=args.punc_model,
|
|
model_revision=None,
|
|
ngpu=args.ngpu,
|
|
)
|
|
else:
|
|
inference_pipeline_punc = None
|
|
|
|
|
|
# vad
|
|
inference_pipeline_vad = pipeline(
|
|
task=Tasks.voice_activity_detection,
|
|
model=args.vad_model,
|
|
model_revision='v1.2.0',
|
|
output_dir=None,
|
|
batch_size=1,
|
|
mode='online',
|
|
ngpu=args.ngpu,
|
|
)
|
|
print("model loaded")
|
|
|
|
|
|
def vad(data, websocket): # VAD推理
|
|
global inference_pipeline_vad
|
|
segments_result = inference_pipeline_vad(audio_in=data, param_dict=websocket.param_dict_vad)
|
|
speech_start = False
|
|
speech_end = False
|
|
|
|
if len(segments_result) == 0 or len(segments_result["text"]) > 1:
|
|
return speech_start, speech_end
|
|
if segments_result["text"][0][0] != -1:
|
|
speech_start = True
|
|
if segments_result["text"][0][1] != -1:
|
|
speech_end = True
|
|
return speech_start, speech_end
|
|
|
|
|
|
async def ws_serve(websocket,path):
|
|
|
|
frames = [] # 存储所有的帧数据
|
|
buffer = [] # 存储缓存中的帧数据(最多两个片段)
|
|
RECORD_NUM = 0
|
|
global websocket_users
|
|
speech_start, speech_end = False, False
|
|
# 调用asr函数
|
|
websocket.param_dict_vad = {'in_cache': dict(), "is_final": False}
|
|
websocket.param_dict_punc = {'cache': list()}
|
|
websocket.speek = Queue() # websocket 添加进队列对象 让asr读取语音数据包
|
|
websocket.send_msg = Queue() # websocket 添加个队列对象 让ws发送消息到客户端
|
|
websocket_users.add(websocket)
|
|
ss = threading.Thread(target=asr, args=(websocket,))
|
|
ss.start()
|
|
try:
|
|
async for message in websocket:
|
|
if (type(message) == str):
|
|
dict_message = json.loads(message)
|
|
if dict_message['vad_need'] == True:
|
|
vad_method = True
|
|
else:
|
|
vad_method = False
|
|
if vad_method == True:
|
|
if type(message) != str:
|
|
buffer.append(message)
|
|
if len(buffer) > 2:
|
|
buffer.pop(0) # 如果缓存超过两个片段,则删除最早的一个
|
|
|
|
if speech_start:
|
|
frames.append(message)
|
|
RECORD_NUM += 1
|
|
if type(message) != str:
|
|
speech_start_i, speech_end_i = vad(message, websocket)
|
|
# print(speech_start_i, speech_end_i)
|
|
if speech_start_i:
|
|
speech_start = speech_start_i
|
|
frames = []
|
|
frames.extend(buffer) # 把之前2个语音数据快加入
|
|
if speech_end_i or RECORD_NUM > 300:
|
|
speech_start = False
|
|
audio_in = b"".join(frames)
|
|
websocket.speek.put(audio_in)
|
|
frames = [] # 清空所有的帧数据
|
|
buffer = [] # 清空缓存中的帧数据(最多两个片段)
|
|
RECORD_NUM = 0
|
|
if not websocket.send_msg.empty():
|
|
await websocket.send(websocket.send_msg.get())
|
|
websocket.send_msg.task_done()
|
|
else:
|
|
if speech_start :
|
|
frames.append(message)
|
|
RECORD_NUM += 1
|
|
if (type(message) == str):
|
|
dict_message = json.loads(message)
|
|
if dict_message['vad_need'] == False and dict_message['state'] == 'StartTranscription':
|
|
speech_start = True
|
|
elif dict_message['vad_need'] == False and dict_message['state'] == 'StopTranscription':
|
|
speech_start = False
|
|
speech_end = True
|
|
if len(frames) != 0:
|
|
frames.pop()
|
|
if speech_end or RECORD_NUM > 1024:
|
|
speech_start = False
|
|
speech_end = False
|
|
audio_in = b"".join(frames)
|
|
websocket.speek.put(audio_in)
|
|
frames = [] # 清空所有的帧数据
|
|
RECORD_NUM = 0
|
|
await websocket.send(websocket.send_msg.get())
|
|
websocket.send_msg.task_done()
|
|
except websockets.ConnectionClosed:
|
|
print("ConnectionClosed...", websocket_users) # 链接断开
|
|
websocket_users.remove(websocket)
|
|
except websockets.InvalidState:
|
|
print("InvalidState...") # 无效状态
|
|
except Exception as e:
|
|
print("Exception:", e)
|
|
|
|
|
|
|
|
def asr(websocket): # ASR推理
|
|
global inference_pipeline_asr, inference_pipeline_punc
|
|
# global param_dict_punc
|
|
global websocket_users
|
|
while websocket in websocket_users:
|
|
# if not websocket.speek.empty():
|
|
audio_in = websocket.speek.get()
|
|
websocket.speek.task_done()
|
|
if len(audio_in) > 0:
|
|
rec_result = inference_pipeline_asr(audio_in=audio_in)
|
|
if "text" in rec_result:
|
|
websocket.send_msg.put(rec_result["text"]) # 存入发送队列 直接调用send发送不了
|
|
time.sleep(0.1)
|
|
|
|
start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None)
|
|
asyncio.get_event_loop().run_until_complete(start_server)
|
|
asyncio.get_event_loop().run_forever() |