olivebot/agent/fay_agent.py
xszyou a27ab9dfba 第3次更新
更换ReAct agent✓
修复Thread.timer管理逻辑✓
优化提示词减小返回格式出错概率(格式出错会导致重复执行)✓
消息窗里加上执行任务标记✓
更换gpt 3.5模型测试✓
2023-12-14 10:38:08 +08:00

144 lines
5.1 KiB
Python

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.memory import VectorStoreRetrieverMemory
import faiss
from langchain.docstore import InMemoryDocstore
from langchain.vectorstores import FAISS
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent, initialize_agent, agent_types
from langchain.chains import LLMChain
from agent.tools.MyTimer import MyTimer
from agent.tools.QueryTime import QueryTime
from agent.tools.Weather import Weather
from agent.tools.Calculator import Calculator
from agent.tools.CheckSensor import CheckSensor
from agent.tools.Switch import Switch
from agent.tools.Knowledge import Knowledge
from agent.tools.Say import Say
from agent.tools.QueryTimerDB import QueryTimerDB
from agent.tools.DeleteTimer import DeleteTimer
import utils.config_util as utils
from core.content_db import Content_Db
from core import wsa_server
import os
class FayAgentCore():
def __init__(self):
utils.load_config()
os.environ['OPENAI_API_KEY'] = utils.key_gpt_api_key
#使用open ai embedding
embedding_size = 1536 # OpenAIEmbeddings 的维度
index = faiss.IndexFlatL2(embedding_size)
embedding_fn = OpenAIEmbeddings()
#创建llm
llm = ChatOpenAI(verbose=True)#model="gpt-4-1106-preview"
#创建向量数据库
vectorstore = FAISS(embedding_fn, index, InMemoryDocstore({}), {})
# 创建记忆
retriever = vectorstore.as_retriever(search_kwargs=dict(k=2))
memory = VectorStoreRetrieverMemory(memory_key="chat_history", retriever=retriever)
# 保存基本信息到记忆
utils.load_config()
attr_info = ", ".join(f"{key}: {value}" for key, value in utils.config["attribute"].items())
memory.save_context({"input": "我的基本信息是?"}, {"output": attr_info})
#创建agent chain
my_timer = MyTimer()
query_time_tool = QueryTime()
weather_tool = Weather()
calculator_tool = Calculator()
check_sensor_tool = CheckSensor()
switch_tool = Switch()
knowledge_tool = Knowledge()
say_tool = Say()
query_timer_db_tool = QueryTimerDB()
delete_timer_tool = DeleteTimer()
tools = [
Tool(
name=my_timer.name,
func=my_timer.run,
description=my_timer.description
),
Tool(
name=query_time_tool.name,
func=query_time_tool.run,
description=query_time_tool.description
),
Tool(
name=weather_tool.name,
func=weather_tool.run,
description=weather_tool.description
),
Tool(
name=calculator_tool.name,
func=calculator_tool.run,
description=calculator_tool.description
),
Tool(
name=check_sensor_tool.name,
func=check_sensor_tool.run,
description=check_sensor_tool.description
),
Tool(
name=switch_tool.name,
func=switch_tool.run,
description=switch_tool.description
),
Tool(
name=knowledge_tool.name,
func=knowledge_tool.run,
description=knowledge_tool.description
),
Tool(
name=say_tool.name,
func=say_tool.run,
description=say_tool.description
),
Tool(
name=query_timer_db_tool.name,
func=query_timer_db_tool.run,
description=query_timer_db_tool.description
),
Tool(
name=delete_timer_tool.name,
func=delete_timer_tool.run,
description=delete_timer_tool.description
),
]
self.agent = initialize_agent(agent_types=agent_types.AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
tools=tools, llm=llm, verbose=True,
max_history=5,
memory=memory, handle_parsing_errors=True)
def run(self, input_text):
#消息保存
contentdb = Content_Db()
contentdb.add_content('member', 'agent', input_text.replace('主人语音说了:', '').replace('主人文字说了:', ''))
wsa_server.get_web_instance().add_cmd({"panelReply": {"type":"member","content":input_text.replace('主人语音说了:', '').replace('主人文字说了:', '')}})
result = None
try:
result = self.agent.run(input_text.replace('执行任务-->', ''))
except Exception as e:
print(e)
result = "执行完毕" if result is None or result == "N/A" else result
#消息保存
contentdb.add_content('fay','agent', result)
wsa_server.get_web_instance().add_cmd({"panelReply": {"type":"fay","content":result}})
return result
if __name__ == "__main__":
agent = FayAgentCore()
print(agent.run("你好"))