4cfad5ae0f
- 全新ui - 全面优化websocket逻辑,提高数字人和ui连接的稳定性及资源开销 - 全面优化唤醒逻辑,提供稳定的普通唤醒模式和前置词唤醒模式 - 优化拾音质量,支持多声道麦克风拾音 - 优化自动播放服务器的对接机制,提供稳定和兼容旧版ue工程的对接模式 - 数字人接口输出机器人表情,以适应新fay ui及单片机的数字人表情输出 - 使用更高级的音频时长计算方式,可以更精准控制音频播放完成后的逻辑 - 修复点击关闭按钮会导致程序退出的bug - 修复没有麦克风的设备开启麦克风会出错的问题 - 为服务器主机地址提供配置项,以方便服务器部署
101 lines
3.1 KiB
Python
101 lines
3.1 KiB
Python
"""
|
||
This script is an example of using the Zhipu API to create various interactions with a ChatGLM3 model. It includes
|
||
functions to:
|
||
|
||
1. Conduct a basic chat session, asking about weather conditions in multiple cities.
|
||
2. Initiate a simple chat in Chinese, asking the model to tell a short story.
|
||
3. Retrieve and print embeddings for a given text input.
|
||
Each function demonstrates a different aspect of the API's capabilities,
|
||
showcasing how to make requests and handle responses.
|
||
|
||
Note: Make sure your Zhipu API key is set as an environment
|
||
variable formate as xxx.xxx (just for check, not need a real key).
|
||
"""
|
||
|
||
from zhipuai import ZhipuAI
|
||
|
||
base_url = "http://127.0.0.1:8000/v1/"
|
||
client = ZhipuAI(api_key="EMP.TY", base_url=base_url)
|
||
|
||
|
||
def function_chat():
|
||
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
||
tools = [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"name": "get_current_weather",
|
||
"description": "Get the current weather in a given location",
|
||
"parameters": {
|
||
"type": "object",
|
||
"properties": {
|
||
"location": {
|
||
"type": "string",
|
||
"description": "The city and state, e.g. San Francisco, CA",
|
||
},
|
||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||
},
|
||
"required": ["location"],
|
||
},
|
||
},
|
||
}
|
||
]
|
||
|
||
response = client.chat.completions.create(
|
||
model="chatglm3_6b",
|
||
messages=messages,
|
||
tools=tools,
|
||
tool_choice="auto",
|
||
)
|
||
if response:
|
||
content = response.choices[0].message.content
|
||
print(content)
|
||
else:
|
||
print("Error:", response.status_code)
|
||
|
||
|
||
def simple_chat(use_stream=True):
|
||
messages = [
|
||
{
|
||
"role": "system",
|
||
"content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow "
|
||
"the user's instructions carefully. Respond using markdown.",
|
||
},
|
||
{
|
||
"role": "user",
|
||
"content": "你好,请你介绍一下chatglm3-6b这个模型"
|
||
}
|
||
]
|
||
response = client.chat.completions.create(
|
||
model="chatglm3_",
|
||
messages=messages,
|
||
stream=use_stream,
|
||
max_tokens=256,
|
||
temperature=0.8,
|
||
top_p=0.8)
|
||
if response:
|
||
if use_stream:
|
||
for chunk in response:
|
||
print(chunk.choices[0].delta.content)
|
||
else:
|
||
content = response.choices[0].message.content
|
||
print(content)
|
||
else:
|
||
print("Error:", response.status_code)
|
||
|
||
|
||
def embedding():
|
||
response = client.embeddings.create(
|
||
model="bge-large-zh-1.5",
|
||
input=["ChatGLM3-6B 是一个大型的中英双语模型。"],
|
||
)
|
||
embeddings = response.data[0].embedding
|
||
print("嵌入完成,维度:", len(embeddings))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
simple_chat(use_stream=False)
|
||
simple_chat(use_stream=True)
|
||
embedding()
|
||
function_chat()
|