222 lines
7.5 KiB
Python
222 lines
7.5 KiB
Python
"""
|
||
This script is an example of using the OpenAI API to create various interactions with a ChatGLM3 model.
|
||
It includes functions to:
|
||
|
||
1. Conduct a basic chat session, asking about weather conditions in multiple cities.
|
||
2. Initiate a simple chat in Chinese, asking the model to tell a short story.
|
||
3. Retrieve and print embeddings for a given text input.
|
||
|
||
Each function demonstrates a different aspect of the API's capabilities, showcasing how to make requests
|
||
and handle responses.
|
||
"""
|
||
|
||
from openai import OpenAI
|
||
|
||
base_url = "http://127.0.0.1:8000/v1/"
|
||
client = OpenAI(api_key="EMPTY", base_url=base_url)
|
||
|
||
|
||
def function_chat():
|
||
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
||
tools = [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"name": "get_current_weather",
|
||
"description": "Get the current weather in a given location",
|
||
"parameters": {
|
||
"type": "object",
|
||
"properties": {
|
||
"location": {
|
||
"type": "string",
|
||
"description": "The city and state, e.g. San Francisco, CA",
|
||
},
|
||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||
},
|
||
"required": ["location"],
|
||
},
|
||
},
|
||
}
|
||
]
|
||
|
||
response = client.chat.completions.create(
|
||
model="chatglm3",
|
||
messages=messages,
|
||
tools=tools,
|
||
tool_choice="auto",
|
||
)
|
||
if response:
|
||
content = response.choices[0].message.content
|
||
print(content)
|
||
else:
|
||
print("Error:", response.status_code)
|
||
|
||
|
||
def chat(text):
|
||
# 定义API请求的数据
|
||
data = {
|
||
"model": "chatglm3-6b",
|
||
"prompt": text,
|
||
"temperature": 0.5, # 控制输出结果的随机性,范围从0.0到1.0,越高越随机
|
||
"max_tokens": 75, # 控制输出文本的长度
|
||
"top_p": 1, # 一个更复杂的参数,与temperature类似但更加精细控制
|
||
"n": 1, # 要返回的最完整的文本段落数
|
||
"stream": False # 是否以流的形式返回输出
|
||
}
|
||
# 发送API请求
|
||
response = client.chat.completions.create(**data)
|
||
# 打印响应结果
|
||
print(response.get("choices")[0]["text"])
|
||
|
||
def chat2(text):
|
||
messages = [
|
||
{
|
||
"role": "user",
|
||
"content": text
|
||
}
|
||
]
|
||
response = client.chat.completions.create(
|
||
model="chatglm3-6b",
|
||
prompt=messages,
|
||
stream=False,
|
||
max_tokens=256,
|
||
temperature=0.8,
|
||
presence_penalty=1.1,
|
||
top_p=0.8)
|
||
if response:
|
||
if False:
|
||
for chunk in response:
|
||
print(chunk.choices[0].delta.content)
|
||
else:
|
||
content = response.choices[0].message.content
|
||
print(content)
|
||
else:
|
||
print("Error:", response.status_code)
|
||
|
||
def simple_chat(use_stream=True):
|
||
messages = [
|
||
{
|
||
"role": "system",
|
||
"content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's "
|
||
"instructions carefully. Respond using markdown.",
|
||
},
|
||
{
|
||
"role": "user",
|
||
"content": "你好,请你用生动的话语给我讲一个猫和狗的小故事吧"
|
||
}
|
||
]
|
||
response = client.chat.completions.create(
|
||
model="chatglm3-6b",
|
||
messages=messages,
|
||
stream=use_stream,
|
||
max_tokens=256,
|
||
temperature=0.8,
|
||
presence_penalty=1.1,
|
||
top_p=0.8)
|
||
if response:
|
||
if use_stream:
|
||
for chunk in response:
|
||
print(chunk.choices[0].delta.content)
|
||
else:
|
||
content = response.choices[0].message.content
|
||
print(content)
|
||
else:
|
||
print("Error:", response.status_code)
|
||
def chat3(text):
|
||
history = [['你好', '你好,有什么帮到你呢?'],['你好,给我讲一个七仙女的故事,大概20字', '七个仙女下凡,来到人间,遇见了王子,经历了许多冒险和考验,最终爱情获胜']]
|
||
messages=[]
|
||
if history is not None:
|
||
for string in history:
|
||
# 打印字符串
|
||
print(string)
|
||
# for his in string:
|
||
# print(his)
|
||
i = 0
|
||
for his in string:
|
||
print(his)
|
||
if i==0:
|
||
dialogue={
|
||
"role": "user",
|
||
"content": his
|
||
}
|
||
elif i==1:
|
||
dialogue={
|
||
"role": "assistant",
|
||
"content": his
|
||
}
|
||
messages.append(dialogue)
|
||
i = 1
|
||
current = {
|
||
"role": "user",
|
||
"content": text
|
||
}
|
||
messages.append(current)
|
||
print("===============messages=========================")
|
||
print(messages)
|
||
print("===============messages=========================")
|
||
# messages = [
|
||
|
||
# {
|
||
# "role": "user",
|
||
# "content": text
|
||
# }
|
||
# ]
|
||
response = client.chat.completions.create(
|
||
model="chatglm3-6b",
|
||
messages=messages,
|
||
stream=False,
|
||
max_tokens=256,
|
||
temperature=0.8,
|
||
presence_penalty=1.1,
|
||
top_p=0.8)
|
||
if response:
|
||
if False:
|
||
for chunk in response:
|
||
print(chunk.choices[0].delta.content)
|
||
else:
|
||
content = response.choices[0].message.content
|
||
print(content)
|
||
else:
|
||
print("Error:", response.status_code)
|
||
|
||
|
||
|
||
def embedding():
|
||
response = client.embeddings.create(
|
||
model="bge-large-zh-1.5",
|
||
input=["你好,给我讲一个故事,大概100字"],
|
||
)
|
||
embeddings = response.data[0].embedding
|
||
print("嵌入完成,维度:", len(embeddings))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
chat3("你好,给我讲楚汉相争的故事,大概20字")
|
||
# simple_chat(use_stream=False)
|
||
# simple_chat(use_stream=True)
|
||
# embedding()
|
||
# function_chat()
|
||
|
||
# curl -X POST "http://127.0.0.1:8000/v1/chat/completions" \
|
||
# -H "Content-Type: application/json" \
|
||
# -d "{\"model\": \"chatglm3-6b\", \"messages\": [{\"role\": \"system\", \"content\": \"You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.\"}, {\"role\": \"user\", \"content\": \"你好,给我讲一个故事,大概100字\"}], \"stream\": false, \"max_tokens\": 100, \"temperature\": 0.8, \"top_p\": 0.8}"
|
||
|
||
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
|
||
# -H 'Content-Type: application/json' \
|
||
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": []}'
|
||
|
||
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
|
||
# -H 'Content-Type: application/json' \
|
||
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": [{"你好","你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。"}]}'
|
||
|
||
|
||
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
|
||
# -H 'Content-Type: application/json' \
|
||
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": [["你好","你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。"]]}'
|
||
|
||
|
||
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
|
||
# -H 'Content-Type: application/json' \
|
||
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": ["你好"]}'
|
||
|
||
|