""" This script is an example of using the OpenAI API to create various interactions with a ChatGLM3 model. It includes functions to: 1. Conduct a basic chat session, asking about weather conditions in multiple cities. 2. Initiate a simple chat in Chinese, asking the model to tell a short story. 3. Retrieve and print embeddings for a given text input. Each function demonstrates a different aspect of the API's capabilities, showcasing how to make requests and handle responses. """ from openai import OpenAI base_url = "http://127.0.0.1:8000/v1/" client = OpenAI(api_key="EMPTY", base_url=base_url) def function_chat(): messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}] tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, }, "required": ["location"], }, }, } ] response = client.chat.completions.create( model="chatglm3", messages=messages, tools=tools, tool_choice="auto", ) if response: content = response.choices[0].message.content print(content) else: print("Error:", response.status_code) def chat(text): # 定义API请求的数据 data = { "model": "chatglm3-6b", "prompt": text, "temperature": 0.5, # 控制输出结果的随机性,范围从0.0到1.0,越高越随机 "max_tokens": 75, # 控制输出文本的长度 "top_p": 1, # 一个更复杂的参数,与temperature类似但更加精细控制 "n": 1, # 要返回的最完整的文本段落数 "stream": False # 是否以流的形式返回输出 } # 发送API请求 response = client.chat.completions.create(**data) # 打印响应结果 print(response.get("choices")[0]["text"]) def chat2(text): messages = [ { "role": "user", "content": text } ] response = client.chat.completions.create( model="chatglm3-6b", prompt=messages, stream=False, max_tokens=256, temperature=0.8, presence_penalty=1.1, top_p=0.8) if response: if False: for chunk in response: print(chunk.choices[0].delta.content) else: content = response.choices[0].message.content print(content) else: print("Error:", response.status_code) def simple_chat(use_stream=True): messages = [ { "role": "system", "content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's " "instructions carefully. Respond using markdown.", }, { "role": "user", "content": "你好,请你用生动的话语给我讲一个猫和狗的小故事吧" } ] response = client.chat.completions.create( model="chatglm3-6b", messages=messages, stream=use_stream, max_tokens=256, temperature=0.8, presence_penalty=1.1, top_p=0.8) if response: if use_stream: for chunk in response: print(chunk.choices[0].delta.content) else: content = response.choices[0].message.content print(content) else: print("Error:", response.status_code) def chat3(text): history = [['你好', '你好,有什么帮到你呢?'],['你好,给我讲一个七仙女的故事,大概20字', '七个仙女下凡,来到人间,遇见了王子,经历了许多冒险和考验,最终爱情获胜']] messages=[] if history is not None: for string in history: # 打印字符串 print(string) # for his in string: # print(his) i = 0 for his in string: print(his) if i==0: dialogue={ "role": "user", "content": his } elif i==1: dialogue={ "role": "assistant", "content": his } messages.append(dialogue) i = 1 current = { "role": "user", "content": text } messages.append(current) print("===============messages=========================") print(messages) print("===============messages=========================") # messages = [ # { # "role": "user", # "content": text # } # ] response = client.chat.completions.create( model="chatglm3-6b", messages=messages, stream=False, max_tokens=256, temperature=0.8, presence_penalty=1.1, top_p=0.8) if response: if False: for chunk in response: print(chunk.choices[0].delta.content) else: content = response.choices[0].message.content print(content) else: print("Error:", response.status_code) def embedding(): response = client.embeddings.create( model="bge-large-zh-1.5", input=["你好,给我讲一个故事,大概100字"], ) embeddings = response.data[0].embedding print("嵌入完成,维度:", len(embeddings)) if __name__ == "__main__": chat3("你好,给我讲楚汉相争的故事,大概20字") # simple_chat(use_stream=False) # simple_chat(use_stream=True) # embedding() # function_chat() # curl -X POST "http://127.0.0.1:8000/v1/chat/completions" \ # -H "Content-Type: application/json" \ # -d "{\"model\": \"chatglm3-6b\", \"messages\": [{\"role\": \"system\", \"content\": \"You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.\"}, {\"role\": \"user\", \"content\": \"你好,给我讲一个故事,大概100字\"}], \"stream\": false, \"max_tokens\": 100, \"temperature\": 0.8, \"top_p\": 0.8}" # curl -X POST "http://127.0.0.1:8000/v1/completions" \ # -H 'Content-Type: application/json' \ # -d '{"prompt": "请用20字内回复我.你今年多大了", "history": []}' # curl -X POST "http://127.0.0.1:8000/v1/completions" \ # -H 'Content-Type: application/json' \ # -d '{"prompt": "请用20字内回复我.你今年多大了", "history": [{"你好","你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。"}]}' # curl -X POST "http://127.0.0.1:8000/v1/completions" \ # -H 'Content-Type: application/json' \ # -d '{"prompt": "请用20字内回复我.你今年多大了", "history": [["你好","你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。"]]}' # curl -X POST "http://127.0.0.1:8000/v1/completions" \ # -H 'Content-Type: application/json' \ # -d '{"prompt": "请用20字内回复我.你今年多大了", "history": ["你好"]}'