import asyncio import websockets import time from queue import Queue import threading import argparse import json from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger import logging import tracemalloc import functools tracemalloc.start() logger = get_logger(log_level=logging.CRITICAL) logger.setLevel(logging.CRITICAL) websocket_users = set() #维护客户端列表 parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0", required=False, help="host ip, localhost, 0.0.0.0") parser.add_argument("--port", type=int, default=10197, required=False, help="grpc server port") parser.add_argument("--model", type=str, default="./data/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404", help="model from modelscope") parser.add_argument("--vad_model", type=str, default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", help="model from modelscope") parser.add_argument("--punc_model", type=str, default="", help="model from modelscope") parser.add_argument("--ngpu", type=int, default=1, help="0 for cpu, 1 for gpu") args = parser.parse_args() print("model loading") # asr param_dict_asr = {} param_dict_asr['hotword']="data/hotword.txt" inference_pipeline_asr = pipeline( task=Tasks.auto_speech_recognition, model=args.model, param_dict=param_dict_asr, ngpu=args.ngpu ) if args.punc_model != "": # param_dict_punc = {'cache': list()} inference_pipeline_punc = pipeline( task=Tasks.punctuation, model=args.punc_model, model_revision=None, ngpu=args.ngpu, ) else: inference_pipeline_punc = None # vad inference_pipeline_vad = pipeline( task=Tasks.voice_activity_detection, model=args.vad_model, model_revision='v1.2.0', output_dir=None, batch_size=1, mode='online', ngpu=args.ngpu, ) print("model loaded") def vad(data, websocket): # VAD推理 global inference_pipeline_vad segments_result = inference_pipeline_vad(audio_in=data, param_dict=websocket.param_dict_vad) speech_start = False speech_end = False if len(segments_result) == 0 or len(segments_result["text"]) > 1: return speech_start, speech_end if segments_result["text"][0][0] != -1: speech_start = True if segments_result["text"][0][1] != -1: speech_end = True return speech_start, speech_end async def ws_serve(websocket,path): frames = [] # 存储所有的帧数据 buffer = [] # 存储缓存中的帧数据(最多两个片段) RECORD_NUM = 0 global websocket_users speech_start, speech_end = False, False # 调用asr函数 websocket.param_dict_vad = {'in_cache': dict(), "is_final": False} websocket.param_dict_punc = {'cache': list()} websocket.speek = Queue() # websocket 添加进队列对象 让asr读取语音数据包 websocket.send_msg = Queue() # websocket 添加个队列对象 让ws发送消息到客户端 websocket_users.add(websocket) ss = threading.Thread(target=asr, args=(websocket,)) ss.start() try: async for message in websocket: if (type(message) == str): dict_message = json.loads(message) if dict_message['vad_need'] == True: vad_method = True else: vad_method = False if vad_method == True: if type(message) != str: buffer.append(message) if len(buffer) > 2: buffer.pop(0) # 如果缓存超过两个片段,则删除最早的一个 if speech_start: frames.append(message) RECORD_NUM += 1 if type(message) != str: speech_start_i, speech_end_i = vad(message, websocket) # print(speech_start_i, speech_end_i) if speech_start_i: speech_start = speech_start_i frames = [] frames.extend(buffer) # 把之前2个语音数据快加入 if speech_end_i or RECORD_NUM > 300: speech_start = False audio_in = b"".join(frames) websocket.speek.put(audio_in) frames = [] # 清空所有的帧数据 buffer = [] # 清空缓存中的帧数据(最多两个片段) RECORD_NUM = 0 if not websocket.send_msg.empty(): await websocket.send(websocket.send_msg.get()) websocket.send_msg.task_done() else: if speech_start : frames.append(message) RECORD_NUM += 1 if (type(message) == str): dict_message = json.loads(message) if dict_message['vad_need'] == False and dict_message['state'] == 'StartTranscription': speech_start = True elif dict_message['vad_need'] == False and dict_message['state'] == 'StopTranscription': speech_start = False speech_end = True if len(frames) != 0: frames.pop() if speech_end or RECORD_NUM > 1024: speech_start = False speech_end = False audio_in = b"".join(frames) websocket.speek.put(audio_in) frames = [] # 清空所有的帧数据 RECORD_NUM = 0 await websocket.send(websocket.send_msg.get()) websocket.send_msg.task_done() except websockets.ConnectionClosed: print("ConnectionClosed...", websocket_users) # 链接断开 websocket_users.remove(websocket) except websockets.InvalidState: print("InvalidState...") # 无效状态 except Exception as e: print("Exception:", e) def asr(websocket): # ASR推理 global inference_pipeline_asr, inference_pipeline_punc # global param_dict_punc global websocket_users while websocket in websocket_users: # if not websocket.speek.empty(): audio_in = websocket.speek.get() websocket.speek.task_done() if len(audio_in) > 0: rec_result = inference_pipeline_asr(audio_in=audio_in) if "text" in rec_result: websocket.send_msg.put(rec_result["text"]) # 存入发送队列 直接调用send发送不了 time.sleep(0.1) start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()