#作用是处理交互逻辑,文字输入,语音、文字及情绪的发送、播放及展示输出 import math import os import time import socket import wave import pygame import requests from pydub import AudioSegment # 适应模型使用 import numpy as np import fay_booter from ai_module import baidu_emotion from core import wsa_server from core.interact import Interact from tts.tts_voice import EnumVoice from scheduler.thread_manager import MyThread from tts import tts_voice from utils import util, config_util from core import qa_service from utils import config_util as cfg from core import content_db from ai_module import nlp_cemotion from llm import nlp_rasa from llm import nlp_gpt from llm import nlp_lingju from llm import nlp_xingchen from llm import nlp_langchain from llm import nlp_ollama_api from llm import nlp_coze from core import member_db import threading import functools #加载配置 cfg.load_config() if cfg.tts_module =='ali': from tts.ali_tss import Speech elif cfg.tts_module == 'gptsovits': from tts.gptsovits import Speech elif cfg.tts_module == 'gptsovits_v3': from tts.gptsovits_v3 import Speech elif cfg.tts_module == 'volcano': from tts.volcano_tts import Speech else: from tts.ms_tts_sdk import Speech #windows运行推送唇形数据 import platform if platform.system() == "Windows": import sys sys.path.append("test/ovr_lipsync") from test_olipsync import LipSyncGenerator modules = { "nlp_gpt": nlp_gpt, "nlp_rasa": nlp_rasa, "nlp_lingju": nlp_lingju, "nlp_xingchen": nlp_xingchen, "nlp_langchain": nlp_langchain, "nlp_ollama_api": nlp_ollama_api, "nlp_coze": nlp_coze } #大语言模型回复 def handle_chat_message(msg, username='User', observation=''): text = '' textlist = [] try: util.printInfo(1, username, '自然语言处理...') tm = time.time() cfg.load_config() module_name = "nlp_" + cfg.key_chat_module selected_module = modules.get(module_name) if selected_module is None: raise RuntimeError('请选择正确的nlp模型') if cfg.key_chat_module == 'rasa': textlist = selected_module.question(msg) text = textlist[0]['text'] else: uid = member_db.new_instance().find_user(username) text = selected_module.question(msg, uid, observation) util.printInfo(1, username, '自然语言处理完成. 耗时: {} ms'.format(math.floor((time.time() - tm) * 1000))) if text == '哎呀,你这么说我也不懂,详细点呗' or text == '': util.printInfo(1, username, '[!] 自然语言无语了!') text = '哎呀,你这么说我也不懂,详细点呗' except BaseException as e: print(e) util.printInfo(1, username, '自然语言处理错误!') text = '哎呀,你这么说我也不懂,详细点呗' return text,textlist #可以使用自动播放的标记 can_auto_play = True auto_play_lock = threading.Lock() class FeiFei: def __init__(self): self.lock = threading.Lock() self.mood = 0.0 # 情绪值 self.old_mood = 0.0 self.item_index = 0 self.X = np.array([1, 0, 0, 0, 0, 0, 0, 0]).reshape(1, -1) # 适应模型变量矩阵 # self.W = np.array([0.01577594,1.16119452,0.75828,0.207746,1.25017864,0.1044121,0.4294899,0.2770932]).reshape(-1,1) #适应模型变量矩阵 self.W = np.array([0.0, 0.6, 0.1, 0.7, 0.3, 0.0, 0.0, 0.0]).reshape(-1, 1) # 适应模型变量矩阵 self.wsParam = None self.wss = None self.sp = Speech() self.speaking = False #声音是否在播放 self.__running = True self.sp.connect() #TODO 预连接 self.cemotion = None #语音消息处理检查是否命中q&a def __get_answer(self, interleaver, text): answer = None # 全局问答 answer = qa_service.QAService().question('qa',text) if answer is not None: return answer #语音消息处理 def __process_interact(self, interact: Interact): if self.__running: try: index = interact.interact_type if index == 1: #语音文字交互 #记录用户问题,方便obs等调用 self.write_to_file("./logs", "asr_result.txt", interact.data["msg"]) #同步用户问题到数字人 if wsa_server.get_instance().is_connected(interact.data.get("user")): content = {'Topic': 'Unreal', 'Data': {'Key': 'question', 'Value': interact.data["msg"]}, 'Username' : interact.data.get("user")} wsa_server.get_instance().add_cmd(content) #记录用户 username = interact.data.get("user", "User") if member_db.new_instance().is_username_exist(username) == "notexists": member_db.new_instance().add_user(username) uid = member_db.new_instance().find_user(username) #记录用户问题 content_db.new_instance().add_content('member','speak',interact.data["msg"], username, uid) if wsa_server.get_web_instance().is_connected(username): wsa_server.get_web_instance().add_cmd({"panelReply": {"type":"member","content":interact.data["msg"], "username":username, "uid":uid}, "Username" : username}) #确定是否命中q&a answer = self.__get_answer(interact.interleaver, interact.data["msg"]) #大语言模型回复 text = '' textlist = [] if answer is None: if wsa_server.get_web_instance().is_connected(username): wsa_server.get_web_instance().add_cmd({"panelMsg": "思考中...", "Username" : username, 'robot': f'http://{cfg.fay_url}:5000/robot/Thinking.jpg'}) if wsa_server.get_instance().is_connected(username): content = {'Topic': 'Unreal', 'Data': {'Key': 'log', 'Value': "思考中..."}, 'Username' : username, 'robot': f'http://{cfg.fay_url}:5000/robot/Thinking.jpg'} wsa_server.get_instance().add_cmd(content) text,textlist = handle_chat_message(interact.data["msg"], username, interact.data.get("observation", "")) # qa_service.QAService().record_qapair(interact.data["msg"], text)#沟通记录缓存到qa文件 else: text = answer #记录回复 self.write_to_file("./logs", "answer_result.txt", text) content_db.new_instance().add_content('fay','speak',text, username, uid) #文字输出:面板、聊天窗、log、数字人 if wsa_server.get_web_instance().is_connected(username): wsa_server.get_web_instance().add_cmd({"panelMsg": text, "Username" : username, 'robot': f'http://{cfg.fay_url}:5000/robot/Speaking.jpg'}) wsa_server.get_web_instance().add_cmd({"panelReply": {"type":"fay","content":text, "username":username, "uid":uid}, "Username" : username}) if len(textlist) > 1: i = 1 while i < len(textlist): content_db.new_instance().add_content('fay','speak',textlist[i]['text'], username, uid) if wsa_server.get_web_instance().is_connected(username): wsa_server.get_web_instance().add_cmd({"panelReply": {"type":"fay","content":textlist[i]['text'], "username":username, "uid":uid}, "Username" : username, 'robot': f'http://{cfg.fay_url}:5000/robot/Speaking.jpg'}) i+= 1 util.printInfo(1, interact.data.get('user'), '({}) {}'.format(self.__get_mood_voice(), text)) if wsa_server.get_instance().is_connected(username): content = {'Topic': 'Unreal', 'Data': {'Key': 'text', 'Value': text}, 'Username' : username, 'robot': f'http://{cfg.fay_url}:5000/robot/Speaking.jpg'} wsa_server.get_instance().add_cmd(content) #声音输出 MyThread(target=self.say, args=[interact, text]).start() return text elif (index == 2):#透传模式,用于适配自动播放控制及agent的通知工具 #记录用户 username = interact.data.get("user", "User") if member_db.new_instance().is_username_exist(username) == "notexists": member_db.new_instance().add_user(username) uid = member_db.new_instance().find_user(username) #TODO 这里可以通过qa来触发指定的脚本操作,如ppt翻页等 if interact.data.get("text"): #记录回复 text = interact.data.get("text") self.write_to_file("./logs", "answer_result.txt", text) content_db.new_instance().add_content('fay','speak', text, username, uid) #文字输出:面板、聊天窗、log、数字人 if wsa_server.get_web_instance().is_connected(username): wsa_server.get_web_instance().add_cmd({"panelMsg": text, "Username" : username, 'robot': f'http://{cfg.fay_url}:5000/robot/Speaking.jpg'}) wsa_server.get_web_instance().add_cmd({"panelReply": {"type":"fay","content":text, "username":username, "uid":uid}, "Username" : username}) util.printInfo(1, interact.data.get('user'), '({}) {}'.format(self.__get_mood_voice(), text)) if wsa_server.get_instance().is_connected(username): content = {'Topic': 'Unreal', 'Data': {'Key': 'text', 'Value': text}, 'Username' : username, 'robot': f'http://{cfg.fay_url}:5000/robot/Speaking.jpg'} wsa_server.get_instance().add_cmd(content) #声音输出 MyThread(target=self.say, args=[interact, text]).start() except BaseException as e: print(e) return e else: return "还没有开始运行" #记录问答到log def write_to_file(self, path, filename, content): if not os.path.exists(path): os.makedirs(path) full_path = os.path.join(path, filename) with open(full_path, 'w', encoding='utf-8') as file: file.write(content) file.flush() os.fsync(file.fileno()) #触发语音交互 def on_interact(self, interact: Interact): MyThread(target=self.__update_mood, args=[interact]).start() return self.__process_interact(interact) # 发送情绪 def __send_mood(self): while self.__running: time.sleep(3) if wsa_server.get_instance().is_connected("User"): if self.old_mood != self.mood: content = {'Topic': 'Unreal', 'Data': {'Key': 'mood', 'Value': self.mood}} wsa_server.get_instance().add_cmd(content) self.old_mood = self.mood #TODO 考虑重构这个逻辑 # 更新情绪 def __update_mood(self, interact): perception = config_util.config["interact"]["perception"] if interact.interact_type == 1: try: if cfg.ltp_mode == "cemotion": result = nlp_cemotion.get_sentiment(self.cemotion, interact.data["msg"]) chat_perception = perception["chat"] if result >= 0.5 and result <= 1: self.mood = self.mood + (chat_perception / 150.0) elif result <= 0.2: self.mood = self.mood - (chat_perception / 100.0) else: if str(cfg.baidu_emotion_api_key) == '' or str(cfg.baidu_emotion_app_id) == '' or str(cfg.baidu_emotion_secret_key) == '': self.mood = 0 else: result = int(baidu_emotion.get_sentiment(interact.data["msg"])) chat_perception = perception["chat"] if result >= 2: self.mood = self.mood + (chat_perception / 150.0) elif result == 0: self.mood = self.mood - (chat_perception / 100.0) except BaseException as e: self.mood = 0 print("[System] 情绪更新错误!") print(e) elif interact.interact_type == 2: self.mood = self.mood + (perception["join"] / 100.0) elif interact.interact_type == 3: self.mood = self.mood + (perception["gift"] / 100.0) elif interact.interact_type == 4: self.mood = self.mood + (perception["follow"] / 100.0) if self.mood >= 1: self.mood = 1 if self.mood <= -1: self.mood = -1 #获取不同情绪声音 def __get_mood_voice(self): voice = tts_voice.get_voice_of(config_util.config["attribute"]["voice"]) if voice is None: voice = EnumVoice.XIAO_XIAO styleList = voice.value["styleList"] sayType = styleList["calm"] if -1 <= self.mood < -0.5: sayType = styleList["angry"] if -0.5 <= self.mood < -0.1: sayType = styleList["lyrical"] if -0.1 <= self.mood < 0.1: sayType = styleList["calm"] if 0.1 <= self.mood < 0.5: sayType = styleList["assistant"] if 0.5 <= self.mood <= 1: sayType = styleList["cheerful"] return sayType # 合成声音 def say(self, interact, text): try: result = None audio_url = interact.data.get('audio')#透传的音频 if audio_url is not None: file_name = 'sample-' + str(int(time.time() * 1000)) + '.wav' result = self.download_wav(audio_url, './samples/', file_name) elif config_util.config["interact"]["playSound"] or wsa_server.get_instance().is_connected(interact.data.get("user")) or self.__is_send_remote_device_audio(interact):#tts util.printInfo(1, interact.data.get('user'), '合成音频...') tm = time.time() result = self.sp.to_sample(text.replace("*", ""), self.__get_mood_voice()) util.printInfo(1, interact.data.get('user'), '合成音频完成. 耗时: {} ms 文件:{}'.format(math.floor((time.time() - tm) * 1000), result)) if result is not None: MyThread(target=self.__process_output_audio, args=[result, interact, text]).start() return result else: if wsa_server.get_web_instance().is_connected(interact.data.get('user')): wsa_server.get_web_instance().add_cmd({"panelMsg": "", 'Username' : interact.data.get('user'), 'robot': f'http://{cfg.fay_url}:5000/robot/Normal.jpg'}) if wsa_server.get_instance().is_connected(interact.data.get("user")): content = {'Topic': 'Unreal', 'Data': {'Key': 'log', 'Value': ''}, 'Username' : interact.data.get('user'), 'robot': f'http://{cfg.fay_url}:5000/robot/Normal.jpg'} wsa_server.get_instance().add_cmd(content) except BaseException as e: print(e) return None #下载wav def download_wav(self, url, save_directory, filename): try: # 发送HTTP GET请求以获取WAV文件内容 response = requests.get(url, stream=True) response.raise_for_status() # 检查请求是否成功 # 确保保存目录存在 if not os.path.exists(save_directory): os.makedirs(save_directory) # 构建保存文件的路径 save_path = os.path.join(save_directory, filename) # 将WAV文件内容保存到指定文件 with open(save_path, 'wb') as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) return save_path except requests.exceptions.RequestException as e: print(f"[Error] Failed to download file: {e}") return None #面板播放声音 def __play_sound(self, file_url, audio_length, interact): util.printInfo(1, interact.data.get('user'), '播放音频...') pygame.mixer.init() pygame.mixer.music.load(file_url) pygame.mixer.music.play() #等待音频播放完成,唤醒模式不用等待 length = 0 while True: if audio_length + 0.01 > length: length = length + 0.01 time.sleep(0.01) else: break if wsa_server.get_instance().is_connected(interact.data.get("user")): wsa_server.get_web_instance().add_cmd({"panelMsg": "", 'Username' : interact.data.get('user')}) #推送远程音频 def __send_remote_device_audio(self, file_url, interact): delkey = None for key, value in fay_booter.DeviceInputListenerDict.items(): if value.username == interact.data.get("user") and value.isOutput: #按username选择推送,booter.devicelistenerdice按用户名记录 try: value.deviceConnector.send(b"\x00\x01\x02\x03\x04\x05\x06\x07\x08") # 发送音频开始标志,同时也检查设备是否在线 wavfile = open(os.path.abspath(file_url), "rb") data = wavfile.read(102400) total = 0 while data: total += len(data) value.deviceConnector.send(data) data = wavfile.read(102400) time.sleep(0.0001) value.deviceConnector.send(b'\x08\x07\x06\x05\x04\x03\x02\x01\x00')# 发送音频结束标志 util.printInfo(1, value.username, "远程音频发送完成:{}".format(total)) except socket.error as serr: util.printInfo(1, value.username, "远程音频输入输出设备已经断开:{}".format(key)) value.stop() delkey = key if delkey: value = fay_booter.DeviceInputListenerDict.pop(delkey) if wsa_server.get_web_instance().is_connected(interact.data.get('user')): wsa_server.get_web_instance().add_cmd({"remote_audio_connect": False, "Username" : interact.data.get('user')}) def __is_send_remote_device_audio(self, interact): for key, value in fay_booter.DeviceInputListenerDict.items(): if value.username == interact.data.get("user") and value.isOutput: return True return False #输出音频处理 def __process_output_audio(self, file_url, interact, text): try: try: audio = AudioSegment.from_wav(file_url) audio_length = len(audio) / 1000.0 # 时长以秒为单位 except Exception as e: audio_length = 3 #自动播放关闭 global auto_play_lock global can_auto_play with auto_play_lock: can_auto_play = False self.speaking = True #推送远程音频 MyThread(target=self.__send_remote_device_audio, args=[file_url, interact]).start() #发送音频给数字人接口 if wsa_server.get_instance().is_connected(interact.data.get("user")): content = {'Topic': 'Unreal', 'Data': {'Key': 'audio', 'Value': os.path.abspath(file_url), 'HttpValue': f'http://{cfg.fay_url}:5000/audio/' + os.path.basename(file_url), 'Text': text, 'Time': audio_length, 'Type': 'interact'}, 'Username' : interact.data.get('user')} #计算lips if platform.system() == "Windows": try: lip_sync_generator = LipSyncGenerator() viseme_list = lip_sync_generator.generate_visemes(os.path.abspath(file_url)) consolidated_visemes = lip_sync_generator.consolidate_visemes(viseme_list) content["Data"]["Lips"] = consolidated_visemes except Exception as e: print(e) util.printInfo(1, interact.data.get("user"), "唇型数据生成失败") wsa_server.get_instance().add_cmd(content) util.printInfo(1, interact.data.get("user"), "数字人接口发送音频数据成功") #播放完成通知 threading.Timer(audio_length, self.send_play_end_msg, [interact]).start() #面板播放 if config_util.config["interact"]["playSound"]: self.__play_sound(file_url, audio_length, interact) except Exception as e: print(e) def send_play_end_msg(self, interact): if wsa_server.get_web_instance().is_connected(interact.data.get('user')): wsa_server.get_web_instance().add_cmd({"panelMsg": "", 'Username' : interact.data.get('user'), 'robot': f'http://{cfg.fay_url}:5000/robot/Normal.jpg'}) if wsa_server.get_instance().is_connected(interact.data.get("user")): content = {'Topic': 'Unreal', 'Data': {'Key': 'log', 'Value': ""}, 'Username' : interact.data.get('user'), 'robot': f'http://{cfg.fay_url}:5000/robot/Normal.jpg'} wsa_server.get_instance().add_cmd(content) if config_util.config["interact"]["playSound"]: util.printInfo(1, interact.data.get('user'), '结束播放!') #恢复自动播放(如何有) global auto_play_lock global can_auto_play with auto_play_lock: can_auto_play = True self.speaking = False #启动核心服务 def start(self): if cfg.ltp_mode == "cemotion": from cemotion import Cemotion self.cemotion = Cemotion() MyThread(target=self.__send_mood).start() #停止核心服务 def stop(self): self.__running = False self.speaking = False self.sp.close() wsa_server.get_web_instance().add_cmd({"panelMsg": ""}) content = {'Topic': 'Unreal', 'Data': {'Key': 'log', 'Value': ""}} wsa_server.get_instance().add_cmd(content)