import time import torch from torch import nn import torch.nn.functional as F from typing import Iterable, Optional from funasr.register import tables from funasr.models.ctc.ctc import CTC from funasr.utils.datadir_writer import DatadirWriter from funasr.models.paraformer.search import Hypothesis from funasr.train_utils.device_funcs import force_gatherable from funasr.losses.label_smoothing_loss import LabelSmoothingLoss from funasr.metrics.compute_acc import compute_accuracy, th_accuracy from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank class SinusoidalPositionEncoder(torch.nn.Module): """ """ def __int__(self, d_model=80, dropout_rate=0.1): pass def encode( self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32 ): batch_size = positions.size(0) positions = positions.type(dtype) device = positions.device log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype, device=device)) / ( depth / 2 - 1 ) inv_timescales = torch.exp( torch.arange(depth / 2, device=device).type(dtype) * (-log_timescale_increment) ) inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( inv_timescales, [1, 1, -1] ) encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) return encoding.type(dtype) def forward(self, x): batch_size, timesteps, input_dim = x.size() positions = torch.arange(1, timesteps + 1, device=x.device)[None, :] position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) return x + position_encoding class PositionwiseFeedForward(torch.nn.Module): """Positionwise feed forward layer. Args: idim (int): Input dimenstion. hidden_units (int): The number of hidden units. dropout_rate (float): Dropout rate. """ def __init__(self, idim, hidden_units, dropout_rate, activation=torch.nn.ReLU()): """Construct an PositionwiseFeedForward object.""" super(PositionwiseFeedForward, self).__init__() self.w_1 = torch.nn.Linear(idim, hidden_units) self.w_2 = torch.nn.Linear(hidden_units, idim) self.dropout = torch.nn.Dropout(dropout_rate) self.activation = activation def forward(self, x): """Forward function.""" return self.w_2(self.dropout(self.activation(self.w_1(x)))) class MultiHeadedAttentionSANM(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__( self, n_head, in_feat, n_feat, dropout_rate, kernel_size, sanm_shfit=0, lora_list=None, lora_rank=8, lora_alpha=16, lora_dropout=0.1, ): """Construct an MultiHeadedAttention object.""" super().__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head # self.linear_q = nn.Linear(n_feat, n_feat) # self.linear_k = nn.Linear(n_feat, n_feat) # self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.linear_q_k_v = nn.Linear(in_feat, n_feat * 3) self.attn = None self.dropout = nn.Dropout(p=dropout_rate) self.fsmn_block = nn.Conv1d( n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False ) # padding left_padding = (kernel_size - 1) // 2 if sanm_shfit > 0: left_padding = left_padding + sanm_shfit right_padding = kernel_size - 1 - left_padding self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0) def forward_fsmn(self, inputs, mask, mask_shfit_chunk=None): b, t, d = inputs.size() if mask is not None: mask = torch.reshape(mask, (b, -1, 1)) if mask_shfit_chunk is not None: mask = mask * mask_shfit_chunk inputs = inputs * mask x = inputs.transpose(1, 2) x = self.pad_fn(x) x = self.fsmn_block(x) x = x.transpose(1, 2) x += inputs x = self.dropout(x) if mask is not None: x = x * mask return x def forward_qkv(self, x): """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). """ b, t, d = x.size() q_k_v = self.linear_q_k_v(x) q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1) q_h = torch.reshape(q, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time1, d_k) k_h = torch.reshape(k, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) v_h = torch.reshape(v, (b, t, self.h, self.d_k)).transpose( 1, 2 ) # (batch, head, time2, d_k) return q_h, k_h, v_h, v def forward_attention(self, value, scores, mask, mask_att_chunk_encoder=None): """Compute attention context vector. Args: value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) if mask is not None: if mask_att_chunk_encoder is not None: mask = mask * mask_att_chunk_encoder mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) min_value = -float( "inf" ) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min) scores = scores.masked_fill(mask, min_value) self.attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0 ) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = ( x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model) def forward(self, x, mask, mask_shfit_chunk=None, mask_att_chunk_encoder=None): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q_h, k_h, v_h, v = self.forward_qkv(x) fsmn_memory = self.forward_fsmn(v, mask, mask_shfit_chunk) q_h = q_h * self.d_k ** (-0.5) scores = torch.matmul(q_h, k_h.transpose(-2, -1)) att_outs = self.forward_attention(v_h, scores, mask, mask_att_chunk_encoder) return att_outs + fsmn_memory def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q_h, k_h, v_h, v = self.forward_qkv(x) if chunk_size is not None and look_back > 0 or look_back == -1: if cache is not None: k_h_stride = k_h[:, :, : -(chunk_size[2]), :] v_h_stride = v_h[:, :, : -(chunk_size[2]), :] k_h = torch.cat((cache["k"], k_h), dim=2) v_h = torch.cat((cache["v"], v_h), dim=2) cache["k"] = torch.cat((cache["k"], k_h_stride), dim=2) cache["v"] = torch.cat((cache["v"], v_h_stride), dim=2) if look_back != -1: cache["k"] = cache["k"][:, :, -(look_back * chunk_size[1]) :, :] cache["v"] = cache["v"][:, :, -(look_back * chunk_size[1]) :, :] else: cache_tmp = { "k": k_h[:, :, : -(chunk_size[2]), :], "v": v_h[:, :, : -(chunk_size[2]), :], } cache = cache_tmp fsmn_memory = self.forward_fsmn(v, None) q_h = q_h * self.d_k ** (-0.5) scores = torch.matmul(q_h, k_h.transpose(-2, -1)) att_outs = self.forward_attention(v_h, scores, None) return att_outs + fsmn_memory, cache class LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input) def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None): if maxlen is None: maxlen = lengths.max() row_vector = torch.arange(0, maxlen, 1).to(lengths.device) matrix = torch.unsqueeze(lengths, dim=-1) mask = row_vector < matrix mask = mask.detach() return mask.type(dtype).to(device) if device is not None else mask.type(dtype) class EncoderLayerSANM(nn.Module): def __init__( self, in_size, size, self_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False, stochastic_depth_rate=0.0, ): """Construct an EncoderLayer object.""" super(EncoderLayerSANM, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(in_size) self.norm2 = LayerNorm(size) self.dropout = nn.Dropout(dropout_rate) self.in_size = in_size self.size = size self.normalize_before = normalize_before self.concat_after = concat_after if self.concat_after: self.concat_linear = nn.Linear(size + size, size) self.stochastic_depth_rate = stochastic_depth_rate self.dropout_rate = dropout_rate def forward(self, x, mask, cache=None, mask_shfit_chunk=None, mask_att_chunk_encoder=None): """Compute encoded features. Args: x_input (torch.Tensor): Input tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). """ skip_layer = False # with stochastic depth, residual connection `x + f(x)` becomes # `x <- x + 1 / (1 - p) * f(x)` at training time. stoch_layer_coeff = 1.0 if self.training and self.stochastic_depth_rate > 0: skip_layer = torch.rand(1).item() < self.stochastic_depth_rate stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) if skip_layer: if cache is not None: x = torch.cat([cache, x], dim=1) return x, mask residual = x if self.normalize_before: x = self.norm1(x) if self.concat_after: x_concat = torch.cat( ( x, self.self_attn( x, mask, mask_shfit_chunk=mask_shfit_chunk, mask_att_chunk_encoder=mask_att_chunk_encoder, ), ), dim=-1, ) if self.in_size == self.size: x = residual + stoch_layer_coeff * self.concat_linear(x_concat) else: x = stoch_layer_coeff * self.concat_linear(x_concat) else: if self.in_size == self.size: x = residual + stoch_layer_coeff * self.dropout( self.self_attn( x, mask, mask_shfit_chunk=mask_shfit_chunk, mask_att_chunk_encoder=mask_att_chunk_encoder, ) ) else: x = stoch_layer_coeff * self.dropout( self.self_attn( x, mask, mask_shfit_chunk=mask_shfit_chunk, mask_att_chunk_encoder=mask_att_chunk_encoder, ) ) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm2(x) return x, mask, cache, mask_shfit_chunk, mask_att_chunk_encoder def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0): """Compute encoded features. Args: x_input (torch.Tensor): Input tensor (#batch, time, size). mask (torch.Tensor): Mask tensor for the input (#batch, time). cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). Returns: torch.Tensor: Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). """ residual = x if self.normalize_before: x = self.norm1(x) if self.in_size == self.size: attn, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back) x = residual + attn else: x, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) x = residual + self.feed_forward(x) if not self.normalize_before: x = self.norm2(x) return x, cache @tables.register("encoder_classes", "SenseVoiceEncoderSmall") class SenseVoiceEncoderSmall(nn.Module): """ Author: Speech Lab of DAMO Academy, Alibaba Group SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition https://arxiv.org/abs/2006.01713 """ def __init__( self, input_size: int, output_size: int = 256, attention_heads: int = 4, linear_units: int = 2048, num_blocks: int = 6, tp_blocks: int = 0, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, attention_dropout_rate: float = 0.0, stochastic_depth_rate: float = 0.0, input_layer: Optional[str] = "conv2d", pos_enc_class=SinusoidalPositionEncoder, normalize_before: bool = True, concat_after: bool = False, positionwise_layer_type: str = "linear", positionwise_conv_kernel_size: int = 1, padding_idx: int = -1, kernel_size: int = 11, sanm_shfit: int = 0, selfattention_layer_type: str = "sanm", **kwargs, ): super().__init__() self._output_size = output_size self.embed = SinusoidalPositionEncoder() self.normalize_before = normalize_before positionwise_layer = PositionwiseFeedForward positionwise_layer_args = ( output_size, linear_units, dropout_rate, ) encoder_selfattn_layer = MultiHeadedAttentionSANM encoder_selfattn_layer_args0 = ( attention_heads, input_size, output_size, attention_dropout_rate, kernel_size, sanm_shfit, ) encoder_selfattn_layer_args = ( attention_heads, output_size, output_size, attention_dropout_rate, kernel_size, sanm_shfit, ) self.encoders0 = nn.ModuleList( [ EncoderLayerSANM( input_size, output_size, encoder_selfattn_layer(*encoder_selfattn_layer_args0), positionwise_layer(*positionwise_layer_args), dropout_rate, ) for i in range(1) ] ) self.encoders = nn.ModuleList( [ EncoderLayerSANM( output_size, output_size, encoder_selfattn_layer(*encoder_selfattn_layer_args), positionwise_layer(*positionwise_layer_args), dropout_rate, ) for i in range(num_blocks - 1) ] ) self.tp_encoders = nn.ModuleList( [ EncoderLayerSANM( output_size, output_size, encoder_selfattn_layer(*encoder_selfattn_layer_args), positionwise_layer(*positionwise_layer_args), dropout_rate, ) for i in range(tp_blocks) ] ) self.after_norm = LayerNorm(output_size) self.tp_norm = LayerNorm(output_size) def output_size(self) -> int: return self._output_size def forward( self, xs_pad: torch.Tensor, ilens: torch.Tensor, ): """Embed positions in tensor.""" masks = sequence_mask(ilens, device=ilens.device)[:, None, :] xs_pad *= self.output_size() ** 0.5 xs_pad = self.embed(xs_pad) # forward encoder1 for layer_idx, encoder_layer in enumerate(self.encoders0): encoder_outs = encoder_layer(xs_pad, masks) xs_pad, masks = encoder_outs[0], encoder_outs[1] for layer_idx, encoder_layer in enumerate(self.encoders): encoder_outs = encoder_layer(xs_pad, masks) xs_pad, masks = encoder_outs[0], encoder_outs[1] xs_pad = self.after_norm(xs_pad) # forward encoder2 olens = masks.squeeze(1).sum(1).int() for layer_idx, encoder_layer in enumerate(self.tp_encoders): encoder_outs = encoder_layer(xs_pad, masks) xs_pad, masks = encoder_outs[0], encoder_outs[1] xs_pad = self.tp_norm(xs_pad) return xs_pad, olens @tables.register("model_classes", "SenseVoiceSmall") class SenseVoiceSmall(nn.Module): """CTC-attention hybrid Encoder-Decoder model""" def __init__( self, specaug: str = None, specaug_conf: dict = None, normalize: str = None, normalize_conf: dict = None, encoder: str = None, encoder_conf: dict = None, ctc_conf: dict = None, input_size: int = 80, vocab_size: int = -1, ignore_id: int = -1, blank_id: int = 0, sos: int = 1, eos: int = 2, length_normalized_loss: bool = False, **kwargs, ): super().__init__() if specaug is not None: specaug_class = tables.specaug_classes.get(specaug) specaug = specaug_class(**specaug_conf) if normalize is not None: normalize_class = tables.normalize_classes.get(normalize) normalize = normalize_class(**normalize_conf) encoder_class = tables.encoder_classes.get(encoder) encoder = encoder_class(input_size=input_size, **encoder_conf) encoder_output_size = encoder.output_size() if ctc_conf is None: ctc_conf = {} ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf) self.blank_id = blank_id self.sos = sos if sos is not None else vocab_size - 1 self.eos = eos if eos is not None else vocab_size - 1 self.vocab_size = vocab_size self.ignore_id = ignore_id self.specaug = specaug self.normalize = normalize self.encoder = encoder self.error_calculator = None self.ctc = ctc self.length_normalized_loss = length_normalized_loss self.encoder_output_size = encoder_output_size self.lid_dict = {"auto": 0, "zh": 3, "en": 4, "yue": 7, "ja": 11, "ko": 12, "nospeech": 13} self.lid_int_dict = {24884: 3, 24885: 4, 24888: 7, 24892: 11, 24896: 12, 24992: 13} self.textnorm_dict = {"withitn": 14, "woitn": 15} self.textnorm_int_dict = {25016: 14, 25017: 15} self.embed = torch.nn.Embedding(7 + len(self.lid_dict) + len(self.textnorm_dict), input_size) self.emo_dict = {"unk": 25009, "happy": 25001, "sad": 25002, "angry": 25003, "neutral": 25004} self.criterion_att = LabelSmoothingLoss( size=self.vocab_size, padding_idx=self.ignore_id, smoothing=kwargs.get("lsm_weight", 0.0), normalize_length=self.length_normalized_loss, ) @staticmethod def from_pretrained(model:str=None, **kwargs): from funasr import AutoModel model, kwargs = AutoModel.build_model(model=model, trust_remote_code=True, **kwargs) return model, kwargs def forward( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs, ): """Encoder + Decoder + Calc loss Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) text: (Batch, Length) text_lengths: (Batch,) """ # import pdb; # pdb.set_trace() if len(text_lengths.size()) > 1: text_lengths = text_lengths[:, 0] if len(speech_lengths.size()) > 1: speech_lengths = speech_lengths[:, 0] batch_size = speech.shape[0] # 1. Encoder encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, text) loss_ctc, cer_ctc = None, None loss_rich, acc_rich = None, None stats = dict() loss_ctc, cer_ctc = self._calc_ctc_loss( encoder_out[:, 4:, :], encoder_out_lens - 4, text[:, 4:], text_lengths - 4 ) loss_rich, acc_rich = self._calc_rich_ce_loss( encoder_out[:, :4, :], text[:, :4] ) loss = loss_ctc # Collect total loss stats stats["loss"] = torch.clone(loss.detach()) if loss_ctc is not None else None stats["loss_rich"] = torch.clone(loss_rich.detach()) if loss_rich is not None else None stats["acc_rich"] = acc_rich # force_gatherable: to-device and to-tensor if scalar for DataParallel if self.length_normalized_loss: batch_size = int((text_lengths + 1).sum()) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) return loss, stats, weight def encode( self, speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, **kwargs, ): """Frontend + Encoder. Note that this method is used by asr_inference.py Args: speech: (Batch, Length, ...) speech_lengths: (Batch, ) ind: int """ # Data augmentation if self.specaug is not None and self.training: speech, speech_lengths = self.specaug(speech, speech_lengths) # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN if self.normalize is not None: speech, speech_lengths = self.normalize(speech, speech_lengths) lids = torch.LongTensor([[self.lid_int_dict[int(lid)] if torch.rand(1) > 0.2 and int(lid) in self.lid_int_dict else 0 ] for lid in text[:, 0]]).to(speech.device) language_query = self.embed(lids) styles = torch.LongTensor([[self.textnorm_int_dict[int(style)]] for style in text[:, 3]]).to(speech.device) style_query = self.embed(styles) speech = torch.cat((style_query, speech), dim=1) speech_lengths += 1 event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(speech.size(0), 1, 1) input_query = torch.cat((language_query, event_emo_query), dim=1) speech = torch.cat((input_query, speech), dim=1) speech_lengths += 3 encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths) return encoder_out, encoder_out_lens def _calc_ctc_loss( self, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ys_pad: torch.Tensor, ys_pad_lens: torch.Tensor, ): # Calc CTC loss loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) # Calc CER using CTC cer_ctc = None if not self.training and self.error_calculator is not None: ys_hat = self.ctc.argmax(encoder_out).data cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) return loss_ctc, cer_ctc def _calc_rich_ce_loss( self, encoder_out: torch.Tensor, ys_pad: torch.Tensor, ): decoder_out = self.ctc.ctc_lo(encoder_out) # 2. Compute attention loss loss_rich = self.criterion_att(decoder_out, ys_pad.contiguous()) acc_rich = th_accuracy( decoder_out.view(-1, self.vocab_size), ys_pad.contiguous(), ignore_label=self.ignore_id, ) return loss_rich, acc_rich def inference( self, data_in, data_lengths=None, key: list = ["wav_file_tmp_name"], tokenizer=None, frontend=None, **kwargs, ): meta_data = {} if ( isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank" ): # fbank speech, speech_lengths = data_in, data_lengths if len(speech.shape) < 3: speech = speech[None, :, :] if speech_lengths is None: speech_lengths = speech.shape[1] else: # extract fbank feats time1 = time.perf_counter() audio_sample_list = load_audio_text_image_video( data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000), data_type=kwargs.get("data_type", "sound"), tokenizer=tokenizer, ) time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" speech, speech_lengths = extract_fbank( audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend ) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" meta_data["batch_data_time"] = ( speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 ) speech = speech.to(device=kwargs["device"]) speech_lengths = speech_lengths.to(device=kwargs["device"]) language = kwargs.get("language", "auto") language_query = self.embed( torch.LongTensor( [[self.lid_dict[language] if language in self.lid_dict else 0]] ).to(speech.device) ).repeat(speech.size(0), 1, 1) use_itn = kwargs.get("use_itn", False) textnorm = kwargs.get("text_norm", None) if textnorm is None: textnorm = "withitn" if use_itn else "woitn" textnorm_query = self.embed( torch.LongTensor([[self.textnorm_dict[textnorm]]]).to(speech.device) ).repeat(speech.size(0), 1, 1) speech = torch.cat((textnorm_query, speech), dim=1) speech_lengths += 1 event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat( speech.size(0), 1, 1 ) input_query = torch.cat((language_query, event_emo_query), dim=1) speech = torch.cat((input_query, speech), dim=1) speech_lengths += 3 # Encoder encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths) if isinstance(encoder_out, tuple): encoder_out = encoder_out[0] # c. Passed the encoder result and the beam search ctc_logits = self.ctc.log_softmax(encoder_out) if kwargs.get("ban_emo_unk", False): ctc_logits[:, :, self.emo_dict["unk"]] = -float("inf") results = [] b, n, d = encoder_out.size() if isinstance(key[0], (list, tuple)): key = key[0] if len(key) < b: key = key * b for i in range(b): x = ctc_logits[i, : encoder_out_lens[i].item(), :] yseq = x.argmax(dim=-1) yseq = torch.unique_consecutive(yseq, dim=-1) ibest_writer = None if kwargs.get("output_dir") is not None: if not hasattr(self, "writer"): self.writer = DatadirWriter(kwargs.get("output_dir")) ibest_writer = self.writer[f"1best_recog"] mask = yseq != self.blank_id token_int = yseq[mask].tolist() # Change integer-ids to tokens text = tokenizer.decode(token_int) result_i = {"key": key[i], "text": text} results.append(result_i) if ibest_writer is not None: ibest_writer["text"][key[i]] = text return results, meta_data def export(self, **kwargs): from export_meta import export_rebuild_model if "max_seq_len" not in kwargs: kwargs["max_seq_len"] = 512 models = export_rebuild_model(model=self, **kwargs) return models