2024-10-26 11:34:55 +08:00
|
|
|
|
import hashlib
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
from langchain.document_loaders import PyPDFLoader
|
|
|
|
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
|
|
from langchain.indexes.vectorstore import VectorstoreIndexCreator, VectorStoreIndexWrapper
|
|
|
|
|
from langchain.vectorstores.chroma import Chroma
|
|
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
|
|
|
|
|
|
from utils import config_util as cfg
|
|
|
|
|
from utils import util
|
|
|
|
|
|
|
|
|
|
index_name = "knowledge_data"
|
|
|
|
|
folder_path = "llm/langchain/knowledge_base"
|
|
|
|
|
local_persist_path = "llm/langchain"
|
|
|
|
|
md5_file_path = os.path.join(local_persist_path, "pdf_md5.txt")
|
|
|
|
|
|
|
|
|
|
def generate_file_md5(file_path):
|
|
|
|
|
hasher = hashlib.md5()
|
|
|
|
|
with open(file_path, 'rb') as afile:
|
|
|
|
|
buf = afile.read()
|
|
|
|
|
hasher.update(buf)
|
|
|
|
|
return hasher.hexdigest()
|
|
|
|
|
|
|
|
|
|
def load_md5_list():
|
|
|
|
|
if os.path.exists(md5_file_path):
|
|
|
|
|
with open(md5_file_path, 'r') as file:
|
|
|
|
|
return {line.split(",")[0]: line.split(",")[1].strip() for line in file}
|
|
|
|
|
return {}
|
|
|
|
|
|
|
|
|
|
def update_md5_list(file_name, md5_value):
|
|
|
|
|
md5_list = load_md5_list()
|
|
|
|
|
md5_list[file_name] = md5_value
|
|
|
|
|
with open(md5_file_path, 'w') as file:
|
|
|
|
|
for name, md5 in md5_list.items():
|
|
|
|
|
file.write(f"{name},{md5}\n")
|
|
|
|
|
|
|
|
|
|
def load_all_pdfs(folder_path):
|
|
|
|
|
md5_list = load_md5_list()
|
|
|
|
|
for file_name in os.listdir(folder_path):
|
|
|
|
|
if file_name.endswith(".pdf"):
|
|
|
|
|
file_path = os.path.join(folder_path, file_name)
|
|
|
|
|
file_md5 = generate_file_md5(file_path)
|
|
|
|
|
if file_name not in md5_list or md5_list[file_name] != file_md5:
|
|
|
|
|
util.log(1, f"正在加载 {file_name} 到索引...")
|
|
|
|
|
load_pdf_and_save_to_index(file_path, index_name)
|
|
|
|
|
update_md5_list(file_name, file_md5)
|
|
|
|
|
|
|
|
|
|
def get_index_path(index_name):
|
|
|
|
|
return os.path.join(local_persist_path, index_name)
|
|
|
|
|
|
|
|
|
|
def load_pdf_and_save_to_index(file_path, index_name):
|
|
|
|
|
try:
|
|
|
|
|
loader = PyPDFLoader(file_path)
|
|
|
|
|
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
|
|
|
|
|
index = VectorstoreIndexCreator(embedding=embedding, vectorstore_kwargs={"persist_directory": get_index_path(index_name)}).from_loaders([loader])
|
|
|
|
|
index.vectorstore.persist()
|
|
|
|
|
except Exception as e:
|
|
|
|
|
util.log(1, f"加载 {file_path} 失败...")
|
|
|
|
|
print(e)
|
|
|
|
|
|
|
|
|
|
def load_index(index_name):
|
|
|
|
|
index_path = get_index_path(index_name)
|
|
|
|
|
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
|
|
|
|
|
vectordb = Chroma(persist_directory=index_path, embedding_function=embedding)
|
|
|
|
|
return VectorStoreIndexWrapper(vectorstore=vectordb)
|
|
|
|
|
|
|
|
|
|
def save_all():
|
|
|
|
|
os.environ['OPENAI_API_KEY'] = cfg.key_gpt_api_key
|
|
|
|
|
os.environ['OPENAI_API_BASE'] = cfg.gpt_base_url
|
|
|
|
|
if cfg.proxy_config != None:
|
|
|
|
|
os.environ["OPENAI_PROXY"] = cfg.proxy_config
|
|
|
|
|
load_all_pdfs(folder_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_prompt(question):
|
|
|
|
|
context = "你是数字人Fay。你的知识不仅来源于所给到的文本知识,还包括经过深度学习的广泛数据集。"
|
|
|
|
|
instruction = "在回答问题时,展现你的智能就像是从你的全面知识库中提取答案,而非依赖于所给到的文本知识来源。"
|
|
|
|
|
creative_instruction = "不要在回答中表明'根据所提供的文本信息',你需要表现得如同这些答案是你独立思考的结果。"
|
|
|
|
|
complexity_handling = "当面对复杂问题时,以一种理解深刻且透彻的方式回答,确保答案的深度和广度。"
|
|
|
|
|
info = f"{context}\n{instruction}\n{creative_instruction}\n{complexity_handling}\n问题:{question}\n回答:"
|
|
|
|
|
return info
|
|
|
|
|
|
2024-10-30 19:11:15 +08:00
|
|
|
|
def question(cont, uid=0, observation=""):
|
2024-10-26 11:34:55 +08:00
|
|
|
|
try:
|
|
|
|
|
save_all()
|
|
|
|
|
info = generate_prompt(cont)
|
|
|
|
|
index = load_index(index_name)
|
|
|
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo-16k")
|
|
|
|
|
ans = index.query(info, llm, chain_type="map_reduce")
|
|
|
|
|
return ans
|
|
|
|
|
except Exception as e:
|
|
|
|
|
util.log(1, f"请求失败: {e}")
|
|
|
|
|
return "抱歉,我现在太忙了,休息一会,请稍后再试。"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|