olivebot/utils/openai_api/openai_api_request.py

222 lines
7.5 KiB
Python
Raw Normal View History

"""
This script is an example of using the OpenAI API to create various interactions with a ChatGLM3 model.
It includes functions to:
1. Conduct a basic chat session, asking about weather conditions in multiple cities.
2. Initiate a simple chat in Chinese, asking the model to tell a short story.
3. Retrieve and print embeddings for a given text input.
Each function demonstrates a different aspect of the API's capabilities, showcasing how to make requests
and handle responses.
"""
from openai import OpenAI
base_url = "http://127.0.0.1:8000/v1/"
client = OpenAI(api_key="EMPTY", base_url=base_url)
def function_chat():
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = client.chat.completions.create(
model="chatglm3",
messages=messages,
tools=tools,
tool_choice="auto",
)
if response:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
def chat(text):
# 定义API请求的数据
data = {
"model": "chatglm3-6b",
"prompt": text,
"temperature": 0.5, # 控制输出结果的随机性范围从0.0到1.0,越高越随机
"max_tokens": 75, # 控制输出文本的长度
"top_p": 1, # 一个更复杂的参数与temperature类似但更加精细控制
"n": 1, # 要返回的最完整的文本段落数
"stream": False # 是否以流的形式返回输出
}
# 发送API请求
response = client.chat.completions.create(**data)
# 打印响应结果
print(response.get("choices")[0]["text"])
def chat2(text):
messages = [
{
"role": "user",
"content": text
}
]
response = client.chat.completions.create(
model="chatglm3-6b",
prompt=messages,
stream=False,
max_tokens=256,
temperature=0.8,
presence_penalty=1.1,
top_p=0.8)
if response:
if False:
for chunk in response:
print(chunk.choices[0].delta.content)
else:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
def simple_chat(use_stream=True):
messages = [
{
"role": "system",
"content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's "
"instructions carefully. Respond using markdown.",
},
{
"role": "user",
"content": "你好,请你用生动的话语给我讲一个猫和狗的小故事吧"
}
]
response = client.chat.completions.create(
model="chatglm3-6b",
messages=messages,
stream=use_stream,
max_tokens=256,
temperature=0.8,
presence_penalty=1.1,
top_p=0.8)
if response:
if use_stream:
for chunk in response:
print(chunk.choices[0].delta.content)
else:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
def chat3(text):
history = [['你好', '你好,有什么帮到你呢?'],['你好给我讲一个七仙女的故事大概20字', '七个仙女下凡,来到人间,遇见了王子,经历了许多冒险和考验,最终爱情获胜']]
messages=[]
if history is not None:
for string in history:
# 打印字符串
print(string)
# for his in string:
# print(his)
i = 0
for his in string:
print(his)
if i==0:
dialogue={
"role": "user",
"content": his
}
elif i==1:
dialogue={
"role": "assistant",
"content": his
}
messages.append(dialogue)
i = 1
current = {
"role": "user",
"content": text
}
messages.append(current)
print("===============messages=========================")
print(messages)
print("===============messages=========================")
# messages = [
# {
# "role": "user",
# "content": text
# }
# ]
response = client.chat.completions.create(
model="chatglm3-6b",
messages=messages,
stream=False,
max_tokens=256,
temperature=0.8,
presence_penalty=1.1,
top_p=0.8)
if response:
if False:
for chunk in response:
print(chunk.choices[0].delta.content)
else:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
def embedding():
response = client.embeddings.create(
model="bge-large-zh-1.5",
input=["你好给我讲一个故事大概100字"],
)
embeddings = response.data[0].embedding
print("嵌入完成,维度:", len(embeddings))
if __name__ == "__main__":
chat3("你好给我讲楚汉相争的故事大概20字")
# simple_chat(use_stream=False)
# simple_chat(use_stream=True)
# embedding()
# function_chat()
# curl -X POST "http://127.0.0.1:8000/v1/chat/completions" \
# -H "Content-Type: application/json" \
# -d "{\"model\": \"chatglm3-6b\", \"messages\": [{\"role\": \"system\", \"content\": \"You are ChatGLM3, a large language model trained by Zhipu.AI. Follow the user's instructions carefully. Respond using markdown.\"}, {\"role\": \"user\", \"content\": \"你好给我讲一个故事大概100字\"}], \"stream\": false, \"max_tokens\": 100, \"temperature\": 0.8, \"top_p\": 0.8}"
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
# -H 'Content-Type: application/json' \
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": []}'
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
# -H 'Content-Type: application/json' \
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": [{"你好","你好👋!我是人工智能助手 ChatGLM-6B很高兴见到你欢迎问我任何问题。"}]}'
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
# -H 'Content-Type: application/json' \
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": [["你好","你好👋!我是人工智能助手 ChatGLM-6B很高兴见到你欢迎问我任何问题。"]]}'
# curl -X POST "http://127.0.0.1:8000/v1/completions" \
# -H 'Content-Type: application/json' \
# -d '{"prompt": "请用20字内回复我.你今年多大了", "history": ["你好"]}'