olivebot/ai_module/yolov8.py

149 lines
5.4 KiB
Python
Raw Normal View History

from ultralytics import YOLO
from scipy.spatial import procrustes
import numpy as np
import cv2
import time
from scheduler.thread_manager import MyThread
__fei_eyes = None
class FeiEyes:
def __init__(self):
"""
鼻子0
左眼1右眼2
左耳3右耳4
左肩5右肩6
左肘7右肘8
左腕9右腕10
左髋11右髋12
左膝13右膝14
左脚踝15右脚踝16
"""
self.POSE_PAIRS = [
(3, 5), (5, 6), # upper body
(5, 7), (6, 8), (7, 9), (8, 10), # lower body
(11, 12), (11, 13), (12, 14), (13, 15) # arms
]
self.my_face = np.array([[154.4565, 193.7006],
[181.8575, 164.8366],
[117.1820, 164.3602],
[213.5605, 193.0460],
[ 62.7056, 193.5217]])
self.is_running = False
self.img = None
def is_sitting(self, keypoints):
if len(keypoints) < 17: # 确保有足够的关键点
return False
# 检查每个关键点的置信度
if keypoints[11][2] < 0.5 or keypoints[12][2] < 0.5 or keypoints[13][2] < 0.5 or keypoints[14][2] < 0.5 or keypoints[15][2] < 0.5 or keypoints[16][2] < 0.5:
return False
left_hip, right_hip = keypoints[11][:2], keypoints[12][:2]
left_knee, right_knee = keypoints[13][:2], keypoints[14][:2]
left_ankle, right_ankle = keypoints[15][:2], keypoints[16][:2]
hip_knee_y = (left_hip[1] + right_hip[1] + left_knee[1] + right_knee[1]) / 4
knee_ankle_y = (left_knee[1] + right_knee[1] + left_ankle[1] + right_ankle[1]) / 4
return hip_knee_y < knee_ankle_y
def is_standing(self, keypoints):
if len(keypoints) < 17 or keypoints[0][2] < 0.5 or keypoints[15][2] < 0.5 or keypoints[16][2] < 0.5:
return False
head = keypoints[0][:2]
left_ankle, right_ankle = keypoints[15][:2], keypoints[16][:2]
return head[1] > left_ankle[1] and head[1] > right_ankle[1]
def get_counts(self):
if not self.is_running:
return 0,0,0
return self.person_count, self.stand_count, self.sit_count
def get_status(self):
return self.is_running
def get_img(self):
if self.is_running:
return self.img
else:
return None
def start(self):
cap = cv2.VideoCapture(0)
if cap.isOpened():
self.is_running = True
MyThread(target=self.run, args=[cap]).start()
def stop(self):
self.is_running = False
def run(self, cap):
model = YOLO("yolov8n-pose.pt")
while self.is_running:
time.sleep(0.033)
ret, frame = cap.read()
self.img = frame
operated_frame = frame.copy()
if not ret:
break
results = model.predict(operated_frame, verbose=False)
person_count = 0
sit_count = 0
stand_count = 0
for res in results: # loop over results
for box, cls in zip(res.boxes.xyxy, res.boxes.cls): # loop over detections
x1, y1, x2, y2 = box
cv2.rectangle(operated_frame, (int(x1.item()), int(y1.item())), (int(x2.item()), int(y2.item())), (0, 255, 0), 2)
cv2.putText(operated_frame, f"{res.names[int(cls.item())]}", (int(x1.item()), int(y1.item()) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
if res.keypoints is not None and res.keypoints.xy.numel() > 0: # check if keypoints exist
keypoints = res.keypoints[0]
#总人数
person_count += 1
#坐着的人数
if self.is_sitting(keypoints):
sit_count += 1
#站着的人数
elif self.is_standing(keypoints):
stand_count += 1
for keypoint in keypoints: # loop over keypoints
if len(keypoint) == 3:
x, y, conf = keypoint
if conf > 0.5: # draw keypoints with confidence greater than 0.5
cv2.circle(operated_frame, (int(x.item()), int(y.item())), 3, (0, 0, 255), -1)
# Draw lines connecting keypoints
for pair in self.POSE_PAIRS:
if pair[0] < len(keypoints) and pair[1] < len(keypoints):
pt1, pt2 = keypoints[pair[0]][:2], keypoints[pair[1]][:2]
conf1, conf2 = keypoints[pair[0]][2], keypoints[pair[1]][2]
if conf1 > 0.5 and conf2 > 0.5:
# cv2.line(operated_frame, (int(pt1[0].item()), int(pt1[1].item())), (int(pt2[0].item()), int(pt2[1].item())), (255, 255, 0), 2)
pass
self.person_count = person_count
self.sit_count = sit_count
self.stand_count = stand_count
cv2.imshow("YOLO v8 Fay Eyes", operated_frame)
cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()
def new_instance():
global __fei_eyes
if __fei_eyes is None:
__fei_eyes = FeiEyes()
return __fei_eyes