101 lines
3.1 KiB
Python
101 lines
3.1 KiB
Python
|
"""
|
|||
|
This script is an example of using the Zhipu API to create various interactions with a ChatGLM3 model. It includes
|
|||
|
functions to:
|
|||
|
|
|||
|
1. Conduct a basic chat session, asking about weather conditions in multiple cities.
|
|||
|
2. Initiate a simple chat in Chinese, asking the model to tell a short story.
|
|||
|
3. Retrieve and print embeddings for a given text input.
|
|||
|
Each function demonstrates a different aspect of the API's capabilities,
|
|||
|
showcasing how to make requests and handle responses.
|
|||
|
|
|||
|
Note: Make sure your Zhipu API key is set as an environment
|
|||
|
variable formate as xxx.xxx (just for check, not need a real key).
|
|||
|
"""
|
|||
|
|
|||
|
from zhipuai import ZhipuAI
|
|||
|
|
|||
|
base_url = "http://127.0.0.1:8000/v1/"
|
|||
|
client = ZhipuAI(api_key="EMP.TY", base_url=base_url)
|
|||
|
|
|||
|
|
|||
|
def function_chat():
|
|||
|
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
|
|||
|
tools = [
|
|||
|
{
|
|||
|
"type": "function",
|
|||
|
"function": {
|
|||
|
"name": "get_current_weather",
|
|||
|
"description": "Get the current weather in a given location",
|
|||
|
"parameters": {
|
|||
|
"type": "object",
|
|||
|
"properties": {
|
|||
|
"location": {
|
|||
|
"type": "string",
|
|||
|
"description": "The city and state, e.g. San Francisco, CA",
|
|||
|
},
|
|||
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|||
|
},
|
|||
|
"required": ["location"],
|
|||
|
},
|
|||
|
},
|
|||
|
}
|
|||
|
]
|
|||
|
|
|||
|
response = client.chat.completions.create(
|
|||
|
model="chatglm3_6b",
|
|||
|
messages=messages,
|
|||
|
tools=tools,
|
|||
|
tool_choice="auto",
|
|||
|
)
|
|||
|
if response:
|
|||
|
content = response.choices[0].message.content
|
|||
|
print(content)
|
|||
|
else:
|
|||
|
print("Error:", response.status_code)
|
|||
|
|
|||
|
|
|||
|
def simple_chat(use_stream=True):
|
|||
|
messages = [
|
|||
|
{
|
|||
|
"role": "system",
|
|||
|
"content": "You are ChatGLM3, a large language model trained by Zhipu.AI. Follow "
|
|||
|
"the user's instructions carefully. Respond using markdown.",
|
|||
|
},
|
|||
|
{
|
|||
|
"role": "user",
|
|||
|
"content": "你好,请你介绍一下chatglm3-6b这个模型"
|
|||
|
}
|
|||
|
]
|
|||
|
response = client.chat.completions.create(
|
|||
|
model="chatglm3_",
|
|||
|
messages=messages,
|
|||
|
stream=use_stream,
|
|||
|
max_tokens=256,
|
|||
|
temperature=0.8,
|
|||
|
top_p=0.8)
|
|||
|
if response:
|
|||
|
if use_stream:
|
|||
|
for chunk in response:
|
|||
|
print(chunk.choices[0].delta.content)
|
|||
|
else:
|
|||
|
content = response.choices[0].message.content
|
|||
|
print(content)
|
|||
|
else:
|
|||
|
print("Error:", response.status_code)
|
|||
|
|
|||
|
|
|||
|
def embedding():
|
|||
|
response = client.embeddings.create(
|
|||
|
model="bge-large-zh-1.5",
|
|||
|
input=["ChatGLM3-6B 是一个大型的中英双语模型。"],
|
|||
|
)
|
|||
|
embeddings = response.data[0].embedding
|
|||
|
print("嵌入完成,维度:", len(embeddings))
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
simple_chat(use_stream=False)
|
|||
|
simple_chat(use_stream=True)
|
|||
|
embedding()
|
|||
|
function_chat()
|