olivebot/test/funasr/ASR_server.py

199 lines
7.2 KiB
Python
Raw Normal View History

2023-12-12 00:03:36 +08:00
import asyncio
import websockets
import time
from queue import Queue
import threading
import argparse
import json
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
import logging
import tracemalloc
import functools
tracemalloc.start()
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
websocket_users = set() #维护客户端列表
parser = argparse.ArgumentParser()
parser.add_argument("--host",
type=str,
default="0.0.0.0",
required=False,
help="host ip, localhost, 0.0.0.0")
parser.add_argument("--port",
type=int,
default=10197,
required=False,
help="grpc server port")
parser.add_argument("--model",
type=str,
default="./data/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404",
help="model from modelscope")
parser.add_argument("--vad_model",
type=str,
default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
help="model from modelscope")
parser.add_argument("--punc_model",
type=str,
default="",
help="model from modelscope")
parser.add_argument("--ngpu",
type=int,
default=1,
help="0 for cpu, 1 for gpu")
args = parser.parse_args()
print("model loading")
# asr
param_dict_asr = {}
param_dict_asr['hotword']="data/hotword.txt"
inference_pipeline_asr = pipeline(
task=Tasks.auto_speech_recognition,
model=args.model,
param_dict=param_dict_asr,
ngpu=args.ngpu
)
if args.punc_model != "":
# param_dict_punc = {'cache': list()}
inference_pipeline_punc = pipeline(
task=Tasks.punctuation,
model=args.punc_model,
model_revision=None,
ngpu=args.ngpu,
)
else:
inference_pipeline_punc = None
# vad
inference_pipeline_vad = pipeline(
task=Tasks.voice_activity_detection,
model=args.vad_model,
model_revision='v1.2.0',
output_dir=None,
batch_size=1,
mode='online',
ngpu=args.ngpu,
)
print("model loaded")
def vad(data, websocket): # VAD推理
global inference_pipeline_vad
segments_result = inference_pipeline_vad(audio_in=data, param_dict=websocket.param_dict_vad)
speech_start = False
speech_end = False
if len(segments_result) == 0 or len(segments_result["text"]) > 1:
return speech_start, speech_end
if segments_result["text"][0][0] != -1:
speech_start = True
if segments_result["text"][0][1] != -1:
speech_end = True
return speech_start, speech_end
async def ws_serve(websocket,path):
frames = [] # 存储所有的帧数据
buffer = [] # 存储缓存中的帧数据(最多两个片段)
RECORD_NUM = 0
global websocket_users
speech_start, speech_end = False, False
# 调用asr函数
websocket.param_dict_vad = {'in_cache': dict(), "is_final": False}
websocket.param_dict_punc = {'cache': list()}
websocket.speek = Queue() # websocket 添加进队列对象 让asr读取语音数据包
websocket.send_msg = Queue() # websocket 添加个队列对象 让ws发送消息到客户端
websocket_users.add(websocket)
ss = threading.Thread(target=asr, args=(websocket,))
ss.start()
try:
async for message in websocket:
if (type(message) == str):
dict_message = json.loads(message)
if dict_message['vad_need'] == True:
vad_method = True
else:
vad_method = False
if vad_method == True:
if type(message) != str:
buffer.append(message)
if len(buffer) > 2:
buffer.pop(0) # 如果缓存超过两个片段,则删除最早的一个
if speech_start:
frames.append(message)
RECORD_NUM += 1
if type(message) != str:
speech_start_i, speech_end_i = vad(message, websocket)
# print(speech_start_i, speech_end_i)
if speech_start_i:
speech_start = speech_start_i
frames = []
frames.extend(buffer) # 把之前2个语音数据快加入
if speech_end_i or RECORD_NUM > 300:
speech_start = False
audio_in = b"".join(frames)
websocket.speek.put(audio_in)
frames = [] # 清空所有的帧数据
buffer = [] # 清空缓存中的帧数据(最多两个片段)
RECORD_NUM = 0
if not websocket.send_msg.empty():
await websocket.send(websocket.send_msg.get())
websocket.send_msg.task_done()
else:
if speech_start :
frames.append(message)
RECORD_NUM += 1
if (type(message) == str):
dict_message = json.loads(message)
if dict_message['vad_need'] == False and dict_message['state'] == 'StartTranscription':
speech_start = True
elif dict_message['vad_need'] == False and dict_message['state'] == 'StopTranscription':
speech_start = False
speech_end = True
if len(frames) != 0:
frames.pop()
if speech_end or RECORD_NUM > 1024:
speech_start = False
speech_end = False
audio_in = b"".join(frames)
websocket.speek.put(audio_in)
frames = [] # 清空所有的帧数据
RECORD_NUM = 0
await websocket.send(websocket.send_msg.get())
websocket.send_msg.task_done()
except websockets.ConnectionClosed:
print("ConnectionClosed...", websocket_users) # 链接断开
websocket_users.remove(websocket)
except websockets.InvalidState:
print("InvalidState...") # 无效状态
except Exception as e:
print("Exception:", e)
def asr(websocket): # ASR推理
global inference_pipeline_asr, inference_pipeline_punc
# global param_dict_punc
global websocket_users
while websocket in websocket_users:
# if not websocket.speek.empty():
audio_in = websocket.speek.get()
websocket.speek.task_done()
if len(audio_in) > 0:
rec_result = inference_pipeline_asr(audio_in=audio_in)
if "text" in rec_result:
websocket.send_msg.put(rec_result["text"]) # 存入发送队列 直接调用send发送不了
time.sleep(0.1)
start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None)
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()