import os import sys from typing import List import fire import torch import transformers from datasets import load_dataset from kopa import KoPAWithAdapter """ Unused imports: import torch.nn as nn import bitsandbytes as bnb """ from peft import PrefixTuningConfig, get_peft_model from transformers import AutoModelForCausalLM, AutoTokenizer from utils.prompter import Prompter def custom_collate_fn(batch): input_ids_list = [] attention_mask_list = [] static_prefix_list = [] sensor_data_list = [] # qwen_dict= {'llama_eos_tid':, 'qwen_eos_tid':} for b in batch: # 确保输入是张量 if isinstance(b["input_ids"], list): input_ids = torch.tensor(b["input_ids"], dtype=torch.long) else: input_ids = b["input_ids"] input_ids_list.append(input_ids) if isinstance(b["attention_mask"], list): attention_mask = torch.tensor(b["attention_mask"], dtype=torch.long) else: attention_mask = b["attention_mask"] attention_mask_list.append(attention_mask) if "static_prefix" in b: if isinstance(b["static_prefix"], list): static_prefix = torch.tensor(b["static_prefix"], dtype=torch.long) else: static_prefix = b["static_prefix"] static_prefix_list.append(static_prefix) if "sensor_data" in b: if isinstance(b["sensor_data"], list): sensor_data = torch.tensor(b["sensor_data"], dtype=torch.float) else: sensor_data = b["sensor_data"] sensor_data_list.append(sensor_data) max_length=0 for one_inputs in input_ids_list: max_length = one_inputs.size(0) if max_length < one_inputs.size(0) else max_length input_ids_list_=list() for one_inputs in input_ids_list: input_ids_list_.append(torch.cat((one_inputs, torch.full((max_length-one_inputs.size(0),), 0, dtype=torch.int)), dim=-1)) attention_mask_list_=list() for mask in attention_mask_list: attention_mask_list_.append(torch.cat((mask, torch.full((max_length-mask.size(0),), 0, dtype=torch.int)), dim=-1)) # print("=====",input_ids_list) # exit(0) # 堆叠数据 result = { "input_ids": torch.stack(input_ids_list_), "attention_mask": torch.stack(attention_mask_list_), } if static_prefix_list: result["static_prefix"] = torch.stack(static_prefix_list) if sensor_data_list: result["sensor_data"] = torch.stack(sensor_data_list) if "labels" in batch[0]: labels_list = [] for b in batch: if isinstance(b["labels"], list): labels = torch.tensor(b["labels"], dtype=torch.long) else: labels = b["labels"] labels_list.append(labels) labels_list_=list() for label in labels_list: labels_list_.append(torch.cat((label, torch.full((max_length-label.size(0),), 0, dtype=torch.int)), dim=-1)) result["labels"] = torch.stack(labels_list_) return result def train( # model/data params base_model="/root/shared-nvme/models/Qwen2.5-7B-Instruct", data_path: str = "/root/shared-nvme/dataset/olive_dataset.json", output_dir: str = "output", # training hyperparams batch_size: int = 16, micro_batch_size: int = 16, num_epochs: int = 2, learning_rate: float = 1e-4, cutoff_len: int = 512, val_set_size: int = 0, num_prefix: int = 1, # llm hyperparams train_on_inputs: bool = True, # if False, masks out inputs in loss add_eos_token: bool = False, group_by_length: bool = False, # faster, but produces an odd training loss curve # wandb params wandb_project: str = "", wandb_run_name: str = "", wandb_watch: str = "", # options: false | gradients | all wandb_log_model: str = "", # options: false | true resume_from_checkpoint: str = None, # either training checkpoint or final adapter prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca. ): if int(os.environ.get("LOCAL_RANK", 0)) == 0: print( f"Training Alpaca model with params:\n" f"base_model: {base_model}\n" f"data_path: {data_path}\n" f"output_dir: {output_dir}\n" f"batch_size: {batch_size}\n" f"micro_batch_size: {micro_batch_size}\n" f"num_epochs: {num_epochs}\n" f"learning_rate: {learning_rate}\n" f"cutoff_len: {cutoff_len}\n" f"val_set_size: {val_set_size}\n" f"train_on_inputs: {train_on_inputs}\n" f"add_eos_token: {add_eos_token}\n" f"group_by_length: {group_by_length}\n" f"wandb_project: {wandb_project}\n" f"wandb_run_name: {wandb_run_name}\n" f"wandb_watch: {wandb_watch}\n" f"wandb_log_model: {wandb_log_model}\n" f"resume_from_checkpoint: {resume_from_checkpoint or False}\n" f"prompt template: {prompt_template_name}\n" ) assert ( base_model ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" gradient_accumulation_steps = batch_size // micro_batch_size prompter = Prompter(prompt_template_name) device_map = "auto" world_size = int(os.environ.get("WORLD_SIZE", 1)) ddp = world_size != 1 if ddp: device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} gradient_accumulation_steps = gradient_accumulation_steps // world_size model = AutoModelForCausalLM.from_pretrained( base_model, load_in_8bit=True, # 使用Auto类自动选择正确的模型类型 torch_dtype=torch.float16, device_map=device_map, trust_remote_code=True, # Qwen模型需要此参数 ) tokenizer = AutoTokenizer.from_pretrained( base_model, trust_remote_code=True, # 添加此参数 padding_side="left", # Qwen也推荐左侧填充 ) tokenizer.pad_token = tokenizer.eos_token # tokenizer.pad_token_id = ( # 0 # unk. we want this to be different from the eos token # ) # tokenizer.padding_side = "left" # Allow batched inference # model.gradient_checkpointing_enable() # tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id model.generation_config.pad_token_id = model.generation_config.eos_token_id def ensure_consistent_keys(dataset): all_keys = set() for example in dataset: all_keys.update(example.keys()) for example in dataset: for key in all_keys: if key not in example: if key == "static_prefix": example[key] = "" elif key == "sensor_data": example[key] = [0, 0, 0] return dataset # def tokenize(prompt, add_eos_token=True): # # there's probably a way to do this with the tokenizer settings # # but again, gotta move fast # result = tokenizer( # prompt, # truncation=True, # max_length=cutoff_len, # padding=False, # return_tensors=None, # ) # if ( # result["input_ids"][-1] != tokenizer.eos_token_id # and len(result["input_ids"]) < cutoff_len # and add_eos_token # ): # result["input_ids"].append(tokenizer.eos_token_id) # result["attention_mask"].append(1) # # result["labels"] = result["input_ids"].copy() # # return result def generate_and_tokenize_prompt(data_point): full_prompt = prompter.generate_prompt( data_point["instruction"], data_point["input"], data_point["output"], ) # Tokenizer 处理文本 tokenized_full_prompt = tokenizer( full_prompt, truncation=True, max_length=cutoff_len, padding=True, return_tensors='pt', ) # for k,v in tokenized_full_prompt.items(): print("======k,v",k,v,type(k),type(v)) # exit(0) tokenized_full_prompt = {k: v.squeeze(0) for k, v in tokenized_full_prompt.items()} # 处理静态前缀 static_prefix = tokenizer( data_point["instruction"], truncation=True, max_length=10, padding="max_length", return_tensors="pt" )["input_ids"].squeeze(0) # 限制索引范围,确保 `static_prefix` 不会超出 `vocab_size` static_prefix = torch.clamp(static_prefix, min=0, max=tokenizer.vocab_size - 1) tokenized_full_prompt["static_prefix"] = static_prefix # print(f"[DEBUG] static_prefix (after clamp): {static_prefix}") # print(f"[DEBUG] tokenizer vocab_size: {tokenizer.vocab_size}") # **处理动态数据** sensor_values = torch.zeros(3, dtype=torch.float) # **默认值为 Tensor,而不是 list** if data_point["type"] == "dynamic" and "sensor_data" in data_point: raw_sensor_values = data_point["sensor_data"] try: sensor_values = torch.tensor([ float(raw_sensor_values.get("temperature", 0.0)), float(raw_sensor_values.get("humidity", 0.0)), float(raw_sensor_values.get("conductivity", 0.0)) ], dtype=torch.float) except Exception as e: # print(f"[ERROR] sensor_data 解析错误: {raw_sensor_values}, {e}") if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any(): # print(f"[ERROR] NaN/Inf detected in sensor_values: {sensor_values}") sensor_values = torch.zeros(3, dtype=torch.float) # ✅ 确保 sensor_values 是 `Tensor` if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any(): print(f"[ERROR] NaN/Inf detected in sensor_values") if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any(): print(f"[ERROR] NaN/Inf detected in sensor_values") sensor_values = torch.zeros(3, dtype=torch.float) # 限制范围,防止异常值 sensor_values = torch.clamp(sensor_values, min=-100, max=100) # print(f"[DEBUG] sensor_values (AFTER FIX): {sensor_values}") # 🔥 打印调试信息 if not isinstance(sensor_values, torch.Tensor): sensor_values = torch.tensor(sensor_values, dtype=torch.float) tokenized_full_prompt["sensor_data"] = sensor_values # **确保始终是 Tensor** # 最后增加类型检查和转换 for key in tokenized_full_prompt: if isinstance(tokenized_full_prompt[key], list): # Convert lists to tensors tokenized_full_prompt[key] = torch.tensor(tokenized_full_prompt[key]) elif isinstance(tokenized_full_prompt[key], torch.Tensor) and tokenized_full_prompt[key].dim() > 1: # Squeeze extra dimensions if needed tokenized_full_prompt[key] = tokenized_full_prompt[key].squeeze(0) if key in ["input_ids", "attention_mask"] and isinstance(tokenized_full_prompt[key], list): tokenized_full_prompt[key] = torch.tensor(tokenized_full_prompt[key], dtype=torch.long) if isinstance(tokenized_full_prompt["static_prefix"], list): tokenized_full_prompt["static_prefix"] = torch.tensor(tokenized_full_prompt["static_prefix"], dtype=torch.long) # 确保sensor_data是tensor if not isinstance(tokenized_full_prompt["sensor_data"], torch.Tensor): tokenized_full_prompt["sensor_data"] = torch.tensor(tokenized_full_prompt["sensor_data"], dtype=torch.float) tokenized_full_prompt["labels"] = tokenized_full_prompt["input_ids"].clone() # 如果不想对输入部分计算损失,可以将输入部分的标签设为-100 if not train_on_inputs: # 找到用户输入和助手输出的分界点 sep = tokenizer.encode(prompter.separator) instruction_tokens = tokenizer.encode(data_point["instruction"]) # 将用户输入部分的标签设为-100 sep_pos = tokenized_full_prompt["input_ids"].tolist().index(sep[0]) tokenized_full_prompt["labels"][:sep_pos] = -100 return tokenized_full_prompt # 创建PrefixTuning配置 prefix_config = PrefixTuningConfig( num_virtual_tokens=num_prefix, task_type="CAUSAL_LM" ) # 创建PEFT模型 peft_model = get_peft_model(model, prefix_config) # 创建最终的KoPAWithAdapter模型 final_model = KoPAWithAdapter(peft_model, num_prefix, tokenizer) device = next(model.parameters()).device print(f"[INFO] 使用设备: {device}") # 确保final_model及其组件都在相同设备上 final_model = final_model.to(device) if data_path.endswith(".json") or data_path.endswith(".jsonl"): data = load_dataset("json", data_files=data_path) else: data = load_dataset(data_path) if resume_from_checkpoint: # Check the available weights and load them checkpoint_name = os.path.join( resume_from_checkpoint, "pytorch_model.bin" ) # Full checkpoint if not os.path.exists(checkpoint_name): checkpoint_name = os.path.join( resume_from_checkpoint, "adapter_model.bin" ) # only LoRA model - LoRA config above has to fit resume_from_checkpoint = ( False # So the trainer won't try loading its state ) # The two files above have a different name depending on how they were saved, but are actually the same. if os.path.exists(checkpoint_name): print(f"Restarting from {checkpoint_name}") adapters_weights = torch.load(checkpoint_name) else: print(f"Checkpoint {checkpoint_name} not found") # model.print_trainable_parameters() # Be more transparent about the % of trainable params. if val_set_size > 0: train_val = data["train"].train_test_split( test_size=val_set_size, shuffle=True, seed=42 ) train_data = ( train_val["train"].shuffle().map(generate_and_tokenize_prompt) ) train_data = ensure_consistent_keys(train_data) val_data = ( train_val["test"].shuffle().map(generate_and_tokenize_prompt) ) else: train_data = data["train"].shuffle().map(generate_and_tokenize_prompt) train_data = ensure_consistent_keys(train_data) val_data = None if not ddp and torch.cuda.device_count() > 1: # keeps Trainer from trying its own DataParallelism when more than 1 gpu is available model.is_parallelizable = True model.model_parallel = True trainer = transformers.Trainer( model=final_model, data_collator=custom_collate_fn, train_dataset=train_data, eval_dataset=val_data, args=transformers.TrainingArguments( per_device_train_batch_size=micro_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, warmup_steps=100, num_train_epochs=num_epochs, learning_rate=learning_rate, fp16=True, logging_steps=10, optim="adamw_hf", evaluation_strategy="steps" if val_set_size > 0 else "no", save_strategy="steps", eval_steps=None, save_steps=5000, output_dir=output_dir, save_total_limit=2, load_best_model_at_end=True if val_set_size > 0 else False, ddp_find_unused_parameters=False if ddp else None, group_by_length=group_by_length, report_to=None, run_name=None, ), ) # final_model.config.use_cache = False if torch.__version__ >= "2" and sys.platform != "win32": final_model = torch.compile(model) trainer.train(resume_from_checkpoint=resume_from_checkpoint) final_model.save_pretrained(output_dir) # ⭐ 确保embeddings存在再保存 if hasattr(final_model, "embeddings"): torch.save(final_model.embeddings, os.path.join(output_dir, "embeddings.pth")) else: print("[WARNING] final_model没有embeddings属性,跳过保存。") try: final_model.model.save_pretrained(os.path.join(output_dir, "peft_model")) print(f"[INFO] PEFT模型保存到 {os.path.join(output_dir, 'peft_model')}") except Exception as e: print(f"[WARNING] 保存PEFT模型时出错: {e}") def inspect_model_structure(model): """检查模型结构并打印关键层信息""" print(f"Model type: {type(model).__name__}") print(f"Model config: {model.config.__class__.__name__}") # 检查嵌入层 embedding_layers = [] for name, module in model.named_modules(): if any(key in name for key in ['embed', 'wte', 'word_embeddings']): embedding_layers.append((name, type(module).__name__)) if hasattr(module, 'weight'): print(f"Layer {name}: shape {module.weight.shape}") print(f"Found {len(embedding_layers)} potential embedding layers:") for name, type_name in embedding_layers: print(f" - {name}: {type_name}") # 检查注意力层 print("\nAttention structure:") for name, module in model.named_modules(): if 'attention' in name.lower(): print(f" - {name}: {type(module).__name__}") if __name__ == "__main__": fire.Fire(train)