DSP-LLAMA初步微调

This commit is contained in:
黄子寒 2025-03-17 14:49:22 +08:00
parent 45b7a67876
commit 1b3dd9475c
5 changed files with 122708 additions and 203 deletions

122309
data/olive_dataset.json Normal file

File diff suppressed because it is too large Load Diff

View File

@ -6,7 +6,8 @@ import fire
import torch
import transformers
from datasets import load_dataset
from kopa import KoPA, KoPAWithAdapter
from kopa import KoPAWithAdapter
"""
Unused imports:
@ -14,55 +15,100 @@ import torch.nn as nn
import bitsandbytes as bnb
"""
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from peft import PrefixTuningConfig, get_peft_model
from transformers import LlamaForCausalLM, AutoTokenizer
from utils.prompter import Prompter
def custom_collate_fn(batch):
input_ids_list = []
attention_mask_list = []
static_prefix_list = []
sensor_data_list = []
for b in batch:
# 确保输入是张量
if isinstance(b["input_ids"], list):
input_ids = torch.tensor(b["input_ids"], dtype=torch.long)
else:
input_ids = b["input_ids"]
input_ids_list.append(input_ids)
if isinstance(b["attention_mask"], list):
attention_mask = torch.tensor(b["attention_mask"], dtype=torch.long)
else:
attention_mask = b["attention_mask"]
attention_mask_list.append(attention_mask)
if "static_prefix" in b:
if isinstance(b["static_prefix"], list):
static_prefix = torch.tensor(b["static_prefix"], dtype=torch.long)
else:
static_prefix = b["static_prefix"]
static_prefix_list.append(static_prefix)
if "sensor_data" in b:
if isinstance(b["sensor_data"], list):
sensor_data = torch.tensor(b["sensor_data"], dtype=torch.float)
else:
sensor_data = b["sensor_data"]
sensor_data_list.append(sensor_data)
# 堆叠数据
result = {
"input_ids": torch.stack(input_ids_list),
"attention_mask": torch.stack(attention_mask_list),
}
if static_prefix_list:
result["static_prefix"] = torch.stack(static_prefix_list)
if sensor_data_list:
result["sensor_data"] = torch.stack(sensor_data_list)
if "labels" in batch[0]:
labels_list = []
for b in batch:
if isinstance(b["labels"], list):
labels = torch.tensor(b["labels"], dtype=torch.long)
else:
labels = b["labels"]
labels_list.append(labels)
result["labels"] = torch.stack(labels_list)
return result
def train(
# model/data params
base_model = "models/Llama-3.2-3B-Instruct",
data_path: str = "data/CoDeX-S-train.json",
output_dir: str = "output",
# training hyperparams
batch_size: int = 16,
micro_batch_size: int = 16,
num_epochs: int = 2,
learning_rate: float = 3e-4,
cutoff_len: int = 512,
val_set_size: int = 0,
# lora hyperparams
lora_r: int = 16,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [
"q_proj",
"v_proj",
],
num_prefix: int = 1,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
kge_model: str = "data/CoDeX-S.pth"
# model/data params
base_model="models/Llama-3.2-3B-Instruct",
data_path: str = "data/CoDeX-S-train.json",
output_dir: str = "output",
# training hyperparams
batch_size: int = 16,
micro_batch_size: int = 16,
num_epochs: int = 2,
learning_rate: float = 3e-4,
cutoff_len: int = 512,
val_set_size: int = 0,
num_prefix: int = 1,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Training Alpaca-LoRA model with params:\n"
f"Training Alpaca model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
@ -72,11 +118,6 @@ def train(
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"lora_r: {lora_r}\n"
f"num_prefix: {num_prefix}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
@ -86,7 +127,6 @@ def train(
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
f"kge model: {kge_model}\n"
)
assert (
base_model
@ -102,7 +142,6 @@ def train(
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
model = LlamaForCausalLM.from_pretrained(
base_model,
# load_in_8bit=True,
@ -110,34 +149,57 @@ def train(
device_map=device_map,
)
tokenizer = AutoTokenizer.from_pretrained(base_model,use_fast=True)
tokenizer = AutoTokenizer.from_pretrained(base_model)
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
# tokenizer.pad_token_id = (
# 0 # unk. we want this to be different from the eos token
# )
tokenizer.padding_side = "left" # Allow batched inference
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model.generation_config.pad_token_id = model.generation_config.eos_token_id
result["labels"] = result["input_ids"].copy()
def ensure_consistent_keys(dataset):
all_keys = set()
for example in dataset:
all_keys.update(example.keys())
return result
for example in dataset:
for key in all_keys:
if key not in example:
if key == "static_prefix":
example[key] = ""
elif key == "sensor_data":
example[key] = [0, 0, 0]
return dataset
# def tokenize(prompt, add_eos_token=True):
# # there's probably a way to do this with the tokenizer settings
# # but again, gotta move fast
# result = tokenizer(
# prompt,
# truncation=True,
# max_length=cutoff_len,
# padding=False,
# return_tensors=None,
# )
# if (
# result["input_ids"][-1] != tokenizer.eos_token_id
# and len(result["input_ids"]) < cutoff_len
# and add_eos_token
# ):
# result["input_ids"].append(tokenizer.eos_token_id)
# result["attention_mask"].append(1)
#
# result["labels"] = result["input_ids"].copy()
#
# return result
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
@ -145,38 +207,114 @@ def train(
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = tokenize(full_prompt)
# Tokenizer 处理文本
tokenized_full_prompt = tokenizer(
full_prompt,
truncation=True,
max_length=128,
padding="max_length",
return_tensors="pt",
)
tokenized_full_prompt = {k: v.squeeze(0) for k, v in tokenized_full_prompt.items()}
# 处理静态前缀
static_prefix = tokenizer(
data_point["instruction"],
truncation=True,
max_length=10,
padding="max_length",
return_tensors="pt"
)["input_ids"].squeeze(0)
# 限制索引范围,确保 `static_prefix` 不会超出 `vocab_size`
static_prefix = torch.clamp(static_prefix, min=0, max=tokenizer.vocab_size - 1)
tokenized_full_prompt["static_prefix"] = static_prefix
# print(f"[DEBUG] static_prefix (after clamp): {static_prefix}")
print(f"[DEBUG] tokenizer vocab_size: {tokenizer.vocab_size}")
# **处理动态数据**
sensor_values = torch.zeros(3, dtype=torch.float) # **默认值为 Tensor而不是 list**
if data_point["type"] == "dynamic" and "sensor_data" in data_point:
raw_sensor_values = data_point["sensor_data"]
try:
sensor_values = torch.tensor([
float(raw_sensor_values.get("temperature", 0.0)),
float(raw_sensor_values.get("humidity", 0.0)),
float(raw_sensor_values.get("conductivity", 0.0))
], dtype=torch.float)
except Exception as e:
# print(f"[ERROR] sensor_data 解析错误: {raw_sensor_values}, {e}")
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
# print(f"[ERROR] NaN/Inf detected in sensor_values: {sensor_values}")
sensor_values = torch.zeros(3, dtype=torch.float)
# ✅ 确保 sensor_values 是 `Tensor`
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
print(f"[ERROR] NaN/Inf detected in sensor_values")
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
print(f"[ERROR] NaN/Inf detected in sensor_values")
sensor_values = torch.zeros(3, dtype=torch.float)
# 限制范围,防止异常值
sensor_values = torch.clamp(sensor_values, min=-100, max=100)
print(f"[DEBUG] sensor_values (AFTER FIX): {sensor_values}") # 🔥 打印调试信息
if not isinstance(sensor_values, torch.Tensor):
sensor_values = torch.tensor(sensor_values, dtype=torch.float)
tokenized_full_prompt["sensor_data"] = sensor_values # **确保始终是 Tensor**
# 最后增加类型检查和转换
for key in tokenized_full_prompt:
if key in ["input_ids", "attention_mask"] and isinstance(tokenized_full_prompt[key], list):
tokenized_full_prompt[key] = torch.tensor(tokenized_full_prompt[key], dtype=torch.long)
if isinstance(tokenized_full_prompt["static_prefix"], list):
tokenized_full_prompt["static_prefix"] = torch.tensor(tokenized_full_prompt["static_prefix"],
dtype=torch.long)
# 确保sensor_data是tensor
if not isinstance(tokenized_full_prompt["sensor_data"], torch.Tensor):
tokenized_full_prompt["sensor_data"] = torch.tensor(tokenized_full_prompt["sensor_data"], dtype=torch.float)
tokenized_full_prompt["labels"] = tokenized_full_prompt["input_ids"].clone()
# 如果不想对输入部分计算损失,可以将输入部分的标签设为-100
if not train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"]
)
tokenized_user_prompt = tokenize(
user_prompt, add_eos_token=add_eos_token
)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
# 找到用户输入和助手输出的分界点
sep = tokenizer.encode(prompter.separator)
instruction_tokens = tokenizer.encode(data_point["instruction"])
if add_eos_token:
user_prompt_len -= 1
# 将用户输入部分的标签设为-100
sep_pos = tokenized_full_prompt["input_ids"].tolist().index(sep[0])
tokenized_full_prompt["labels"][:sep_pos] = -100
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
# model = prepare_model_for_int8_training(model)
# 创建PrefixTuning配置
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
prefix_config = PrefixTuningConfig(
num_virtual_tokens=num_prefix,
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
slama_model = KoPAWithAdapter(model, num_prefix, kge_model=kge_model)
# 创建PEFT模型
peft_model = get_peft_model(model, prefix_config)
# 创建最终的KoPAWithAdapter模型
final_model = KoPAWithAdapter(peft_model, num_prefix, tokenizer)
device = next(model.parameters()).device
print(f"[INFO] 使用设备: {device}")
# 确保final_model及其组件都在相同设备上
final_model = final_model.to(device)
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
data = load_dataset("json", data_files=data_path)
@ -199,7 +337,6 @@ def train(
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
@ -211,12 +348,15 @@ def train(
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
train_data = ensure_consistent_keys(train_data)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
train_data = ensure_consistent_keys(train_data)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
@ -225,7 +365,8 @@ def train(
model.model_parallel = True
trainer = transformers.Trainer(
model=slama_model,
model=final_model,
data_collator=custom_collate_fn,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
@ -249,30 +390,27 @@ def train(
report_to=None,
run_name=None,
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
# final_model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
final_model = torch.compile(model)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
torch.save(slama_model.embeddings, os.path.join(output_dir, "embeddings.pth"))
final_model.save_pretrained(output_dir)
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
# ⭐ 确保embeddings存在再保存
if hasattr(final_model, "embeddings"):
torch.save(final_model.embeddings, os.path.join(output_dir, "embeddings.pth"))
else:
print("[WARNING] final_model没有embeddings属性跳过保存。")
try:
final_model.model.save_pretrained(os.path.join(output_dir, "peft_model"))
print(f"[INFO] PEFT模型保存到 {os.path.join(output_dir, 'peft_model')}")
except Exception as e:
print(f"[WARNING] 保存PEFT模型时出错: {e}")
if __name__ == "__main__":

View File

@ -5,7 +5,7 @@ import transformers
from peft import PeftModel
from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from transformers import GenerationConfig, LlamaForCausalLM, AutoTokenizer
base_path = 'YOUR LLM PATH'
@ -33,7 +33,7 @@ if __name__ == "__main__":
embedding_path = "{}/embeddings.pth".format(lora_weights)
test_dataset = load_test_dataset(test_data_path)
kg_embeddings = torch.load(embedding_path).to(cuda)
tokenizer = LlamaTokenizer.from_pretrained(base_path)
tokenizer = AutoTokenizer.from_pretrained(base_path,use_fast=False)
model = LlamaForCausalLM.from_pretrained(
base_path,
torch_dtype=torch.float16

227
kopa.py
View File

@ -3,7 +3,6 @@ import torch.nn as nn
from typing import Optional, List, Union, Tuple
from transformers import LlamaForCausalLM
from process_kge import load_pretrain_kge
class KoPA(nn.Module):
@ -13,14 +12,14 @@ class KoPA(nn.Module):
) -> None:
super(KoPA, self).__init__()
self.llama_model = model
# self.embeddings = nn.Embedding(100, 4096)
self.embeddings = PrefixKGEmbedding(
num_ent=2034,
num_rel=42,
dim_llm=3072,
num_prefix=1
)
self.embeddings = nn.Embedding(100, 3072)
# self.embeddings = PrefixKGEmbedding(
# num_ent=2034,
# num_rel=42,
# dim_llm=3072,
# num_prefix=1
# )
def forward(
self,
input_ids: torch.LongTensor = None,
@ -35,6 +34,9 @@ class KoPA(nn.Module):
return_dict: Optional[bool] = None,
embedding_ids: torch.LongTensor = None
):
if embedding_ids.max() >= self.embeddings.num_embeddings or embedding_ids.min() < 0:
print(f"[ERROR] embedding_ids 超出范围!最大值: {embedding_ids.max()}, 最小值: {embedding_ids.min()}")
embedding_ids = torch.clamp(embedding_ids, min=0, max=self.embeddings.num_embeddings - 1)
kg_embeds = self.embeddings(embedding_ids)
batch_size, seq_len, _ = kg_embeds.shape
token_embeds = self.llama_model.model.model.embed_tokens(input_ids)
@ -43,6 +45,10 @@ class KoPA(nn.Module):
prefix_labels = torch.full((batch_size, seq_len), fill_value=-100, dtype=torch.long)
new_attention_mask = torch.cat((prefix_mask.cuda(), attention_mask), dim=-1)
new_labels = torch.cat((prefix_labels.cuda(), labels), dim=-1)
if embedding_ids.max() >= self.embeddings.num_embeddings or embedding_ids.min() < 0:
print(f"[ERROR] embedding_ids 超出范围!最大值: {embedding_ids.max()}, 最小值: {embedding_ids.min()}")
embedding_ids = torch.clamp(embedding_ids, min=0, max=self.embeddings.num_embeddings - 1)
return self.llama_model(
input_ids=None,
attention_mask=new_attention_mask,
@ -58,87 +64,136 @@ class KoPA(nn.Module):
class KoPAWithAdapter(nn.Module):
def __init__(
self,
model: LlamaForCausalLM,
num_prefix: int,
kge_model: str = "data/UMLS-rotate.pth",
pretrain_emb_path = None
) -> None:
super(KoPAWithAdapter, self).__init__()
self.llama_model = model
ent_embs, rel_embs = load_pretrain_kge(kge_model)
if pretrain_emb_path is None:
print("Adapter Trained From Scratch".format(pretrain_emb_path))
self.embeddings = PretrainKGEmbedding(
pretrain_ent_embs=ent_embs,
pretrain_rel_embs=rel_embs,
dim_llm=3072,
num_prefix=num_prefix
)
else:
print("Adapter Load From {}".format(pretrain_emb_path))
self.embeddings = torch.load(pretrain_emb_path)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
embedding_ids: torch.LongTensor = None
):
kg_embeds = self.embeddings(embedding_ids)
# print(kg_embeds.shape)
batch_size, seq_len, _ = kg_embeds.shape
token_embeds = self.llama_model.model.model.embed_tokens(input_ids)
input_embeds = torch.cat((kg_embeds, token_embeds), dim=1)
prefix_mask = torch.ones((batch_size, seq_len))
prefix_labels = torch.full((batch_size, seq_len), fill_value=-100, dtype=torch.long)
new_attention_mask = torch.cat((prefix_mask.cuda(), attention_mask), dim=-1)
new_labels = torch.cat((prefix_labels.cuda(), labels), dim=-1)
return self.llama_model(
input_ids=None,
attention_mask=new_attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=input_embeds,
labels=new_labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
def __init__(self, model, num_prefix, tokenizer=None):
super().__init__()
self.model = model
self.num_prefix = num_prefix
hidden_size = model.config.hidden_size
# 使用tokenizer获取vocab_size
vocab_size = tokenizer.vocab_size if tokenizer else 32000
self.static_prefix_embedding = nn.Embedding(vocab_size, hidden_size)
self.embeddings = self.static_prefix_embedding # 保留这个属性
self.sensor_mlp = nn.Sequential(
nn.Linear(3, hidden_size // 2),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(hidden_size // 2, hidden_size)
)
# 添加LayerNorm
self.norm = nn.LayerNorm(hidden_size)
print(f"[INFO] 模型初始化: hidden_size={hidden_size}, vocab_size={vocab_size}")
class PrefixKGEmbedding(nn.Module):
def __init__(
self,
num_ent,
num_rel,
dim_llm,
num_prefix
):
super(PrefixKGEmbedding, self).__init__()
self.emb_dim = num_prefix * dim_llm
self.ent_embeddings = nn.Embedding(num_ent, self.emb_dim)
self.rel_embeddings = nn.Embedding(num_rel, self.emb_dim)
def forward(self, input_ids, attention_mask, static_prefix=None, sensor_data=None, labels=None, **kwargs):
batch_size, seq_len = input_ids.shape
device = input_ids.device
def forward(self, triple_ids):
head, relation, tail = triple_ids[:, 0], triple_ids[:, 1], triple_ids[:, 2]
h = self.ent_embeddings(head)
r = self.rel_embeddings(relation)
t = self.ent_embeddings(tail)
prefix = torch.stack((h, r, t), dim=1)
return prefix
# 确保所有组件在同一设备上
self.static_prefix_embedding = self.static_prefix_embedding.to(device)
self.sensor_mlp = self.sensor_mlp.to(device)
self.norm = self.norm.to(device)
# 处理静态前缀
if static_prefix is not None:
static_prefix = static_prefix.to(device)
static_prefix = self.static_prefix_embedding(static_prefix)
else:
static_prefix = torch.zeros(
(batch_size, self.num_prefix, self.model.config.hidden_size),
device=device
)
# 处理动态前缀
if sensor_data is not None:
sensor_data = sensor_data.to(device)
if sensor_data.dim() == 1:
sensor_data = sensor_data.unsqueeze(0)
try:
dynamic_prefix = self.sensor_mlp(sensor_data)
dynamic_prefix = dynamic_prefix.unsqueeze(1).expand(-1, self.num_prefix, -1)
except Exception as e:
print(f"[ERROR] sensor_mlp处理失败: {e}")
dynamic_prefix = torch.zeros_like(static_prefix)
else:
dynamic_prefix = torch.zeros_like(static_prefix)
# 混合前缀
alpha = 0.6
final_prefix = alpha * static_prefix + (1 - alpha) * dynamic_prefix
final_prefix = self.norm(final_prefix)
# 处理token嵌入
token_embeds = self.model.model.embed_tokens(input_ids)
input_embeds = torch.cat((final_prefix, token_embeds), dim=1)
# 扩展注意力掩码
prefix_attention_mask = torch.ones(
(batch_size, self.num_prefix),
dtype=attention_mask.dtype,
device=device
)
extended_attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)
# ✨ 关键修复: 处理标签
if labels is not None:
# 为前缀部分创建-100的标签表示忽略
prefix_labels = torch.full(
(batch_size, self.num_prefix),
fill_value=-100, # -100表示忽略这些位置的损失
dtype=labels.dtype,
device=device
)
# 扩展标签
extended_labels = torch.cat((prefix_labels, labels), dim=1)
else:
extended_labels = None
# 调试输出
# print(f"[DEBUG] 原始输入大小: {input_ids.shape}")
# print(f"[DEBUG] 扩展嵌入大小: {input_embeds.shape}")
# print(f"[DEBUG] 扩展掩码大小: {extended_attention_mask.shape}")
# if extended_labels is not None:
# print(f"[DEBUG] 扩展标签大小: {extended_labels.shape}")
# 确保不提供input_ids
if 'input_ids' in kwargs:
del kwargs['input_ids']
# ✨ 传递扩展后的标签
return self.model(
inputs_embeds=input_embeds,
attention_mask=extended_attention_mask,
labels=extended_labels, # 这是关键修改
use_cache=False,
**kwargs)
# class PrefixKGEmbedding(nn.Module):
# def __init__(
# self,
# num_ent,
# num_rel,
# dim_llm,
# num_prefix
# ):
# super(PrefixKGEmbedding, self).__init__()
# self.emb_dim = num_prefix * dim_llm
# self.ent_embeddings = nn.Embedding(num_ent, self.emb_dim)
# self.rel_embeddings = nn.Embedding(num_rel, self.emb_dim)
#
#
# def forward(self, triple_ids):
# head, relation, tail = triple_ids[:, 0], triple_ids[:, 1], triple_ids[:, 2]
# h = self.ent_embeddings(head)
# r = self.rel_embeddings(relation)
# t = self.ent_embeddings(tail)
# prefix = torch.stack((h, r, t), dim=1)
# return prefix
class PretrainKGEmbedding(nn.Module):
def __init__(
@ -159,7 +214,7 @@ class PretrainKGEmbedding(nn.Module):
self.ent_embeddings.requires_grad_(False)
self.rel_embeddings.requires_grad_(False)
self.adapter = nn.Linear(self.pretrain_dim, self.emb_dim)
def forward(self, triple_ids):
# main training stage

BIN
models/Llama-3.2-3B-Instruct/tokenizer.model (Stored with Git LFS) Normal file

Binary file not shown.