kopa/.ipynb_checkpoints/finetune_kopa-checkpoint.py

477 lines
18 KiB
Python
Raw Normal View History

2025-03-17 20:17:41 +08:00
import os
import sys
from typing import List
import fire
import torch
import transformers
from datasets import load_dataset
from kopa import KoPAWithAdapter
"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""
from peft import PrefixTuningConfig, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer
from utils.prompter import Prompter
def custom_collate_fn(batch):
input_ids_list = []
attention_mask_list = []
static_prefix_list = []
sensor_data_list = []
# qwen_dict= {'llama_eos_tid':, 'qwen_eos_tid':}
for b in batch:
# 确保输入是张量
if isinstance(b["input_ids"], list):
input_ids = torch.tensor(b["input_ids"], dtype=torch.long)
else:
input_ids = b["input_ids"]
input_ids_list.append(input_ids)
if isinstance(b["attention_mask"], list):
attention_mask = torch.tensor(b["attention_mask"], dtype=torch.long)
else:
attention_mask = b["attention_mask"]
attention_mask_list.append(attention_mask)
if "static_prefix" in b:
if isinstance(b["static_prefix"], list):
static_prefix = torch.tensor(b["static_prefix"], dtype=torch.long)
else:
static_prefix = b["static_prefix"]
static_prefix_list.append(static_prefix)
if "sensor_data" in b:
if isinstance(b["sensor_data"], list):
sensor_data = torch.tensor(b["sensor_data"], dtype=torch.float)
else:
sensor_data = b["sensor_data"]
sensor_data_list.append(sensor_data)
max_length=0
for one_inputs in input_ids_list:
max_length = one_inputs.size(0) if max_length < one_inputs.size(0) else max_length
input_ids_list_=list()
for one_inputs in input_ids_list:
input_ids_list_.append(torch.cat((one_inputs, torch.full((max_length-one_inputs.size(0),), 0, dtype=torch.int)), dim=-1))
attention_mask_list_=list()
for mask in attention_mask_list:
attention_mask_list_.append(torch.cat((mask, torch.full((max_length-mask.size(0),), 0, dtype=torch.int)), dim=-1))
# print("=====",input_ids_list)
# exit(0)
# 堆叠数据
result = {
"input_ids": torch.stack(input_ids_list_),
"attention_mask": torch.stack(attention_mask_list_),
}
if static_prefix_list:
result["static_prefix"] = torch.stack(static_prefix_list)
if sensor_data_list:
result["sensor_data"] = torch.stack(sensor_data_list)
if "labels" in batch[0]:
labels_list = []
for b in batch:
if isinstance(b["labels"], list):
labels = torch.tensor(b["labels"], dtype=torch.long)
else:
labels = b["labels"]
labels_list.append(labels)
labels_list_=list()
for label in labels_list:
labels_list_.append(torch.cat((label, torch.full((max_length-label.size(0),), 0, dtype=torch.int)), dim=-1))
result["labels"] = torch.stack(labels_list_)
return result
def train(
# model/data params
base_model="/root/shared-nvme/models/Qwen2.5-7B-Instruct",
data_path: str = "/root/shared-nvme/dataset/olive_dataset.json",
output_dir: str = "output",
# training hyperparams
batch_size: int = 16,
micro_batch_size: int = 16,
num_epochs: int = 2,
learning_rate: float = 1e-4,
cutoff_len: int = 512,
val_set_size: int = 0,
num_prefix: int = 1,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Training Alpaca model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = batch_size // micro_batch_size
prompter = Prompter(prompt_template_name)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=True,
# 使用Auto类自动选择正确的模型类型
torch_dtype=torch.float16,
device_map=device_map,
trust_remote_code=True, # Qwen模型需要此参数
)
tokenizer = AutoTokenizer.from_pretrained(
base_model,
trust_remote_code=True, # 添加此参数
padding_side="left", # Qwen也推荐左侧填充
)
tokenizer.pad_token = tokenizer.eos_token
# tokenizer.pad_token_id = (
# 0 # unk. we want this to be different from the eos token
# )
# tokenizer.padding_side = "left" # Allow batched inference
# model.gradient_checkpointing_enable()
# tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model.generation_config.pad_token_id = model.generation_config.eos_token_id
def ensure_consistent_keys(dataset):
all_keys = set()
for example in dataset:
all_keys.update(example.keys())
for example in dataset:
for key in all_keys:
if key not in example:
if key == "static_prefix":
example[key] = ""
elif key == "sensor_data":
example[key] = [0, 0, 0]
return dataset
# def tokenize(prompt, add_eos_token=True):
# # there's probably a way to do this with the tokenizer settings
# # but again, gotta move fast
# result = tokenizer(
# prompt,
# truncation=True,
# max_length=cutoff_len,
# padding=False,
# return_tensors=None,
# )
# if (
# result["input_ids"][-1] != tokenizer.eos_token_id
# and len(result["input_ids"]) < cutoff_len
# and add_eos_token
# ):
# result["input_ids"].append(tokenizer.eos_token_id)
# result["attention_mask"].append(1)
#
# result["labels"] = result["input_ids"].copy()
#
# return result
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
# Tokenizer 处理文本
tokenized_full_prompt = tokenizer(
full_prompt,
truncation=True,
max_length=cutoff_len,
padding=True,
return_tensors='pt',
)
# for k,v in tokenized_full_prompt.items(): print("======k,v",k,v,type(k),type(v))
# exit(0)
tokenized_full_prompt = {k: v.squeeze(0) for k, v in tokenized_full_prompt.items()}
# 处理静态前缀
static_prefix = tokenizer(
data_point["instruction"],
truncation=True,
max_length=10,
padding="max_length",
return_tensors="pt"
)["input_ids"].squeeze(0)
# 限制索引范围,确保 `static_prefix` 不会超出 `vocab_size`
static_prefix = torch.clamp(static_prefix, min=0, max=tokenizer.vocab_size - 1)
tokenized_full_prompt["static_prefix"] = static_prefix
# print(f"[DEBUG] static_prefix (after clamp): {static_prefix}")
# print(f"[DEBUG] tokenizer vocab_size: {tokenizer.vocab_size}")
# **处理动态数据**
sensor_values = torch.zeros(3, dtype=torch.float) # **默认值为 Tensor而不是 list**
if data_point["type"] == "dynamic" and "sensor_data" in data_point:
raw_sensor_values = data_point["sensor_data"]
try:
sensor_values = torch.tensor([
float(raw_sensor_values.get("temperature", 0.0)),
float(raw_sensor_values.get("humidity", 0.0)),
float(raw_sensor_values.get("conductivity", 0.0))
], dtype=torch.float)
except Exception as e:
# print(f"[ERROR] sensor_data 解析错误: {raw_sensor_values}, {e}")
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
# print(f"[ERROR] NaN/Inf detected in sensor_values: {sensor_values}")
sensor_values = torch.zeros(3, dtype=torch.float)
# ✅ 确保 sensor_values 是 `Tensor`
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
print(f"[ERROR] NaN/Inf detected in sensor_values")
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
print(f"[ERROR] NaN/Inf detected in sensor_values")
sensor_values = torch.zeros(3, dtype=torch.float)
# 限制范围,防止异常值
sensor_values = torch.clamp(sensor_values, min=-100, max=100)
# print(f"[DEBUG] sensor_values (AFTER FIX): {sensor_values}") # 🔥 打印调试信息
if not isinstance(sensor_values, torch.Tensor):
sensor_values = torch.tensor(sensor_values, dtype=torch.float)
tokenized_full_prompt["sensor_data"] = sensor_values # **确保始终是 Tensor**
# 最后增加类型检查和转换
for key in tokenized_full_prompt:
if isinstance(tokenized_full_prompt[key], list):
# Convert lists to tensors
tokenized_full_prompt[key] = torch.tensor(tokenized_full_prompt[key])
elif isinstance(tokenized_full_prompt[key], torch.Tensor) and tokenized_full_prompt[key].dim() > 1:
# Squeeze extra dimensions if needed
tokenized_full_prompt[key] = tokenized_full_prompt[key].squeeze(0)
if key in ["input_ids", "attention_mask"] and isinstance(tokenized_full_prompt[key], list):
tokenized_full_prompt[key] = torch.tensor(tokenized_full_prompt[key], dtype=torch.long)
if isinstance(tokenized_full_prompt["static_prefix"], list):
tokenized_full_prompt["static_prefix"] = torch.tensor(tokenized_full_prompt["static_prefix"],
dtype=torch.long)
# 确保sensor_data是tensor
if not isinstance(tokenized_full_prompt["sensor_data"], torch.Tensor):
tokenized_full_prompt["sensor_data"] = torch.tensor(tokenized_full_prompt["sensor_data"], dtype=torch.float)
tokenized_full_prompt["labels"] = tokenized_full_prompt["input_ids"].clone()
# 如果不想对输入部分计算损失,可以将输入部分的标签设为-100
if not train_on_inputs:
# 找到用户输入和助手输出的分界点
sep = tokenizer.encode(prompter.separator)
instruction_tokens = tokenizer.encode(data_point["instruction"])
# 将用户输入部分的标签设为-100
sep_pos = tokenized_full_prompt["input_ids"].tolist().index(sep[0])
tokenized_full_prompt["labels"][:sep_pos] = -100
return tokenized_full_prompt
# 创建PrefixTuning配置
prefix_config = PrefixTuningConfig(
num_virtual_tokens=num_prefix,
task_type="CAUSAL_LM"
)
# 创建PEFT模型
peft_model = get_peft_model(model, prefix_config)
# 创建最终的KoPAWithAdapter模型
final_model = KoPAWithAdapter(peft_model, num_prefix, tokenizer)
device = next(model.parameters()).device
print(f"[INFO] 使用设备: {device}")
# 确保final_model及其组件都在相同设备上
final_model = final_model.to(device)
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = (
False # So the trainer won't try loading its state
)
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
else:
print(f"Checkpoint {checkpoint_name} not found")
# model.print_trainable_parameters() # Be more transparent about the % of trainable params.
if val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
train_data = ensure_consistent_keys(train_data)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
train_data = ensure_consistent_keys(train_data)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=final_model,
data_collator=custom_collate_fn,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=10,
optim="adamw_hf",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=None,
save_steps=5000,
output_dir=output_dir,
save_total_limit=2,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to=None,
run_name=None,
),
)
# final_model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
final_model = torch.compile(model)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
final_model.save_pretrained(output_dir)
# ⭐ 确保embeddings存在再保存
if hasattr(final_model, "embeddings"):
torch.save(final_model.embeddings, os.path.join(output_dir, "embeddings.pth"))
else:
print("[WARNING] final_model没有embeddings属性跳过保存。")
try:
final_model.model.save_pretrained(os.path.join(output_dir, "peft_model"))
print(f"[INFO] PEFT模型保存到 {os.path.join(output_dir, 'peft_model')}")
except Exception as e:
print(f"[WARNING] 保存PEFT模型时出错: {e}")
def inspect_model_structure(model):
"""检查模型结构并打印关键层信息"""
print(f"Model type: {type(model).__name__}")
print(f"Model config: {model.config.__class__.__name__}")
# 检查嵌入层
embedding_layers = []
for name, module in model.named_modules():
if any(key in name for key in ['embed', 'wte', 'word_embeddings']):
embedding_layers.append((name, type(module).__name__))
if hasattr(module, 'weight'):
print(f"Layer {name}: shape {module.weight.shape}")
print(f"Found {len(embedding_layers)} potential embedding layers:")
for name, type_name in embedding_layers:
print(f" - {name}: {type_name}")
# 检查注意力层
print("\nAttention structure:")
for name, module in model.named_modules():
if 'attention' in name.lower():
print(f" - {name}: {type(module).__name__}")
if __name__ == "__main__":
fire.Fire(train)