2023-10-11 11:51:08 +08:00
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
|
|
import fire
|
|
|
|
|
import torch
|
|
|
|
|
import transformers
|
|
|
|
|
from datasets import load_dataset
|
2025-03-17 14:49:22 +08:00
|
|
|
|
|
|
|
|
|
from kopa import KoPAWithAdapter
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
Unused imports:
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
import bitsandbytes as bnb
|
|
|
|
|
"""
|
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
from peft import PrefixTuningConfig, get_peft_model
|
2025-03-09 22:05:53 +08:00
|
|
|
|
from transformers import LlamaForCausalLM, AutoTokenizer
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
from utils.prompter import Prompter
|
|
|
|
|
|
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
def custom_collate_fn(batch):
|
|
|
|
|
input_ids_list = []
|
|
|
|
|
attention_mask_list = []
|
|
|
|
|
static_prefix_list = []
|
|
|
|
|
sensor_data_list = []
|
|
|
|
|
|
|
|
|
|
for b in batch:
|
|
|
|
|
# 确保输入是张量
|
|
|
|
|
if isinstance(b["input_ids"], list):
|
|
|
|
|
input_ids = torch.tensor(b["input_ids"], dtype=torch.long)
|
|
|
|
|
else:
|
|
|
|
|
input_ids = b["input_ids"]
|
|
|
|
|
input_ids_list.append(input_ids)
|
|
|
|
|
|
|
|
|
|
if isinstance(b["attention_mask"], list):
|
|
|
|
|
attention_mask = torch.tensor(b["attention_mask"], dtype=torch.long)
|
|
|
|
|
else:
|
|
|
|
|
attention_mask = b["attention_mask"]
|
|
|
|
|
attention_mask_list.append(attention_mask)
|
|
|
|
|
|
|
|
|
|
if "static_prefix" in b:
|
|
|
|
|
if isinstance(b["static_prefix"], list):
|
|
|
|
|
static_prefix = torch.tensor(b["static_prefix"], dtype=torch.long)
|
|
|
|
|
else:
|
|
|
|
|
static_prefix = b["static_prefix"]
|
|
|
|
|
static_prefix_list.append(static_prefix)
|
|
|
|
|
|
|
|
|
|
if "sensor_data" in b:
|
|
|
|
|
if isinstance(b["sensor_data"], list):
|
|
|
|
|
sensor_data = torch.tensor(b["sensor_data"], dtype=torch.float)
|
|
|
|
|
else:
|
|
|
|
|
sensor_data = b["sensor_data"]
|
|
|
|
|
sensor_data_list.append(sensor_data)
|
|
|
|
|
|
|
|
|
|
# 堆叠数据
|
|
|
|
|
result = {
|
|
|
|
|
"input_ids": torch.stack(input_ids_list),
|
|
|
|
|
"attention_mask": torch.stack(attention_mask_list),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if static_prefix_list:
|
|
|
|
|
result["static_prefix"] = torch.stack(static_prefix_list)
|
|
|
|
|
|
|
|
|
|
if sensor_data_list:
|
|
|
|
|
result["sensor_data"] = torch.stack(sensor_data_list)
|
|
|
|
|
|
|
|
|
|
if "labels" in batch[0]:
|
|
|
|
|
labels_list = []
|
|
|
|
|
for b in batch:
|
|
|
|
|
if isinstance(b["labels"], list):
|
|
|
|
|
labels = torch.tensor(b["labels"], dtype=torch.long)
|
|
|
|
|
else:
|
|
|
|
|
labels = b["labels"]
|
|
|
|
|
labels_list.append(labels)
|
|
|
|
|
|
|
|
|
|
result["labels"] = torch.stack(labels_list)
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|
2023-10-11 11:51:08 +08:00
|
|
|
|
def train(
|
2025-03-17 14:49:22 +08:00
|
|
|
|
# model/data params
|
|
|
|
|
base_model="models/Llama-3.2-3B-Instruct",
|
|
|
|
|
data_path: str = "data/CoDeX-S-train.json",
|
|
|
|
|
output_dir: str = "output",
|
|
|
|
|
# training hyperparams
|
|
|
|
|
batch_size: int = 16,
|
|
|
|
|
micro_batch_size: int = 16,
|
|
|
|
|
num_epochs: int = 2,
|
|
|
|
|
learning_rate: float = 3e-4,
|
|
|
|
|
cutoff_len: int = 512,
|
|
|
|
|
val_set_size: int = 0,
|
|
|
|
|
num_prefix: int = 1,
|
|
|
|
|
# llm hyperparams
|
|
|
|
|
train_on_inputs: bool = True, # if False, masks out inputs in loss
|
|
|
|
|
add_eos_token: bool = False,
|
|
|
|
|
group_by_length: bool = False, # faster, but produces an odd training loss curve
|
|
|
|
|
# wandb params
|
|
|
|
|
wandb_project: str = "",
|
|
|
|
|
wandb_run_name: str = "",
|
|
|
|
|
wandb_watch: str = "", # options: false | gradients | all
|
|
|
|
|
wandb_log_model: str = "", # options: false | true
|
|
|
|
|
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
|
|
|
|
|
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
|
2023-10-11 11:51:08 +08:00
|
|
|
|
):
|
|
|
|
|
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
|
|
|
|
print(
|
2025-03-17 14:49:22 +08:00
|
|
|
|
f"Training Alpaca model with params:\n"
|
2023-10-11 11:51:08 +08:00
|
|
|
|
f"base_model: {base_model}\n"
|
|
|
|
|
f"data_path: {data_path}\n"
|
|
|
|
|
f"output_dir: {output_dir}\n"
|
|
|
|
|
f"batch_size: {batch_size}\n"
|
|
|
|
|
f"micro_batch_size: {micro_batch_size}\n"
|
|
|
|
|
f"num_epochs: {num_epochs}\n"
|
|
|
|
|
f"learning_rate: {learning_rate}\n"
|
|
|
|
|
f"cutoff_len: {cutoff_len}\n"
|
|
|
|
|
f"val_set_size: {val_set_size}\n"
|
|
|
|
|
f"train_on_inputs: {train_on_inputs}\n"
|
|
|
|
|
f"add_eos_token: {add_eos_token}\n"
|
|
|
|
|
f"group_by_length: {group_by_length}\n"
|
|
|
|
|
f"wandb_project: {wandb_project}\n"
|
|
|
|
|
f"wandb_run_name: {wandb_run_name}\n"
|
|
|
|
|
f"wandb_watch: {wandb_watch}\n"
|
|
|
|
|
f"wandb_log_model: {wandb_log_model}\n"
|
|
|
|
|
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
|
|
|
|
f"prompt template: {prompt_template_name}\n"
|
|
|
|
|
)
|
|
|
|
|
assert (
|
|
|
|
|
base_model
|
|
|
|
|
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
|
|
|
|
gradient_accumulation_steps = batch_size // micro_batch_size
|
|
|
|
|
|
|
|
|
|
prompter = Prompter(prompt_template_name)
|
|
|
|
|
|
|
|
|
|
device_map = "auto"
|
|
|
|
|
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
|
|
|
|
ddp = world_size != 1
|
|
|
|
|
if ddp:
|
|
|
|
|
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
|
|
|
|
gradient_accumulation_steps = gradient_accumulation_steps // world_size
|
|
|
|
|
|
|
|
|
|
model = LlamaForCausalLM.from_pretrained(
|
|
|
|
|
base_model,
|
|
|
|
|
# load_in_8bit=True,
|
|
|
|
|
torch_dtype=torch.float16,
|
|
|
|
|
device_map=device_map,
|
|
|
|
|
)
|
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
|
|
|
|
|
|
|
|
|
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
# tokenizer.pad_token_id = (
|
|
|
|
|
# 0 # unk. we want this to be different from the eos token
|
|
|
|
|
# )
|
|
|
|
|
tokenizer.padding_side = "left" # Allow batched inference
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
model.config.pad_token_id = model.config.eos_token_id
|
|
|
|
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
|
|
|
|
|
|
|
|
|
def ensure_consistent_keys(dataset):
|
|
|
|
|
all_keys = set()
|
|
|
|
|
for example in dataset:
|
|
|
|
|
all_keys.update(example.keys())
|
|
|
|
|
|
|
|
|
|
for example in dataset:
|
|
|
|
|
for key in all_keys:
|
|
|
|
|
if key not in example:
|
|
|
|
|
if key == "static_prefix":
|
|
|
|
|
example[key] = ""
|
|
|
|
|
elif key == "sensor_data":
|
|
|
|
|
example[key] = [0, 0, 0]
|
|
|
|
|
|
|
|
|
|
return dataset
|
|
|
|
|
|
|
|
|
|
# def tokenize(prompt, add_eos_token=True):
|
|
|
|
|
# # there's probably a way to do this with the tokenizer settings
|
|
|
|
|
# # but again, gotta move fast
|
|
|
|
|
# result = tokenizer(
|
|
|
|
|
# prompt,
|
|
|
|
|
# truncation=True,
|
|
|
|
|
# max_length=cutoff_len,
|
|
|
|
|
# padding=False,
|
|
|
|
|
# return_tensors=None,
|
|
|
|
|
# )
|
|
|
|
|
# if (
|
|
|
|
|
# result["input_ids"][-1] != tokenizer.eos_token_id
|
|
|
|
|
# and len(result["input_ids"]) < cutoff_len
|
|
|
|
|
# and add_eos_token
|
|
|
|
|
# ):
|
|
|
|
|
# result["input_ids"].append(tokenizer.eos_token_id)
|
|
|
|
|
# result["attention_mask"].append(1)
|
|
|
|
|
#
|
|
|
|
|
# result["labels"] = result["input_ids"].copy()
|
|
|
|
|
#
|
|
|
|
|
# return result
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
def generate_and_tokenize_prompt(data_point):
|
|
|
|
|
full_prompt = prompter.generate_prompt(
|
|
|
|
|
data_point["instruction"],
|
|
|
|
|
data_point["input"],
|
|
|
|
|
data_point["output"],
|
|
|
|
|
)
|
2025-03-17 14:49:22 +08:00
|
|
|
|
|
|
|
|
|
# Tokenizer 处理文本
|
|
|
|
|
tokenized_full_prompt = tokenizer(
|
|
|
|
|
full_prompt,
|
|
|
|
|
truncation=True,
|
|
|
|
|
max_length=128,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
return_tensors="pt",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
tokenized_full_prompt = {k: v.squeeze(0) for k, v in tokenized_full_prompt.items()}
|
|
|
|
|
|
|
|
|
|
# 处理静态前缀
|
|
|
|
|
static_prefix = tokenizer(
|
|
|
|
|
data_point["instruction"],
|
|
|
|
|
truncation=True,
|
|
|
|
|
max_length=10,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
return_tensors="pt"
|
|
|
|
|
)["input_ids"].squeeze(0)
|
|
|
|
|
|
|
|
|
|
# 限制索引范围,确保 `static_prefix` 不会超出 `vocab_size`
|
|
|
|
|
static_prefix = torch.clamp(static_prefix, min=0, max=tokenizer.vocab_size - 1)
|
|
|
|
|
|
|
|
|
|
tokenized_full_prompt["static_prefix"] = static_prefix
|
|
|
|
|
# print(f"[DEBUG] static_prefix (after clamp): {static_prefix}")
|
|
|
|
|
print(f"[DEBUG] tokenizer vocab_size: {tokenizer.vocab_size}")
|
|
|
|
|
|
|
|
|
|
# **处理动态数据**
|
|
|
|
|
sensor_values = torch.zeros(3, dtype=torch.float) # **默认值为 Tensor,而不是 list**
|
|
|
|
|
|
|
|
|
|
if data_point["type"] == "dynamic" and "sensor_data" in data_point:
|
|
|
|
|
raw_sensor_values = data_point["sensor_data"]
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
sensor_values = torch.tensor([
|
|
|
|
|
float(raw_sensor_values.get("temperature", 0.0)),
|
|
|
|
|
float(raw_sensor_values.get("humidity", 0.0)),
|
|
|
|
|
float(raw_sensor_values.get("conductivity", 0.0))
|
|
|
|
|
], dtype=torch.float)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
# print(f"[ERROR] sensor_data 解析错误: {raw_sensor_values}, {e}")
|
|
|
|
|
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
|
|
|
|
|
# print(f"[ERROR] NaN/Inf detected in sensor_values: {sensor_values}")
|
|
|
|
|
sensor_values = torch.zeros(3, dtype=torch.float)
|
|
|
|
|
|
|
|
|
|
# ✅ 确保 sensor_values 是 `Tensor`
|
|
|
|
|
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
|
|
|
|
|
print(f"[ERROR] NaN/Inf detected in sensor_values")
|
|
|
|
|
if torch.isnan(sensor_values).any() or torch.isinf(sensor_values).any():
|
|
|
|
|
print(f"[ERROR] NaN/Inf detected in sensor_values")
|
|
|
|
|
sensor_values = torch.zeros(3, dtype=torch.float)
|
|
|
|
|
|
|
|
|
|
# 限制范围,防止异常值
|
|
|
|
|
sensor_values = torch.clamp(sensor_values, min=-100, max=100)
|
|
|
|
|
|
|
|
|
|
print(f"[DEBUG] sensor_values (AFTER FIX): {sensor_values}") # 🔥 打印调试信息
|
|
|
|
|
if not isinstance(sensor_values, torch.Tensor):
|
|
|
|
|
sensor_values = torch.tensor(sensor_values, dtype=torch.float)
|
|
|
|
|
|
|
|
|
|
tokenized_full_prompt["sensor_data"] = sensor_values # **确保始终是 Tensor**
|
|
|
|
|
|
|
|
|
|
# 最后增加类型检查和转换
|
|
|
|
|
for key in tokenized_full_prompt:
|
|
|
|
|
if key in ["input_ids", "attention_mask"] and isinstance(tokenized_full_prompt[key], list):
|
|
|
|
|
tokenized_full_prompt[key] = torch.tensor(tokenized_full_prompt[key], dtype=torch.long)
|
|
|
|
|
|
|
|
|
|
if isinstance(tokenized_full_prompt["static_prefix"], list):
|
|
|
|
|
tokenized_full_prompt["static_prefix"] = torch.tensor(tokenized_full_prompt["static_prefix"],
|
|
|
|
|
dtype=torch.long)
|
|
|
|
|
|
|
|
|
|
# 确保sensor_data是tensor
|
|
|
|
|
if not isinstance(tokenized_full_prompt["sensor_data"], torch.Tensor):
|
|
|
|
|
tokenized_full_prompt["sensor_data"] = torch.tensor(tokenized_full_prompt["sensor_data"], dtype=torch.float)
|
|
|
|
|
|
|
|
|
|
tokenized_full_prompt["labels"] = tokenized_full_prompt["input_ids"].clone()
|
|
|
|
|
|
|
|
|
|
# 如果不想对输入部分计算损失,可以将输入部分的标签设为-100
|
2023-10-11 11:51:08 +08:00
|
|
|
|
if not train_on_inputs:
|
2025-03-17 14:49:22 +08:00
|
|
|
|
# 找到用户输入和助手输出的分界点
|
|
|
|
|
sep = tokenizer.encode(prompter.separator)
|
|
|
|
|
instruction_tokens = tokenizer.encode(data_point["instruction"])
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
# 将用户输入部分的标签设为-100
|
|
|
|
|
sep_pos = tokenized_full_prompt["input_ids"].tolist().index(sep[0])
|
|
|
|
|
tokenized_full_prompt["labels"][:sep_pos] = -100
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
return tokenized_full_prompt
|
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
# 创建PrefixTuning配置
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
prefix_config = PrefixTuningConfig(
|
|
|
|
|
num_virtual_tokens=num_prefix,
|
|
|
|
|
task_type="CAUSAL_LM"
|
2023-10-11 11:51:08 +08:00
|
|
|
|
)
|
2025-03-17 14:49:22 +08:00
|
|
|
|
|
|
|
|
|
# 创建PEFT模型
|
|
|
|
|
peft_model = get_peft_model(model, prefix_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 创建最终的KoPAWithAdapter模型
|
|
|
|
|
final_model = KoPAWithAdapter(peft_model, num_prefix, tokenizer)
|
|
|
|
|
device = next(model.parameters()).device
|
|
|
|
|
print(f"[INFO] 使用设备: {device}")
|
|
|
|
|
|
|
|
|
|
# 确保final_model及其组件都在相同设备上
|
|
|
|
|
final_model = final_model.to(device)
|
|
|
|
|
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
|
2023-12-20 19:54:16 +08:00
|
|
|
|
data = load_dataset("json", data_files=data_path)
|
2023-10-11 11:51:08 +08:00
|
|
|
|
else:
|
2023-10-19 20:00:19 +08:00
|
|
|
|
data = load_dataset(data_path)
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
if resume_from_checkpoint:
|
|
|
|
|
# Check the available weights and load them
|
|
|
|
|
checkpoint_name = os.path.join(
|
|
|
|
|
resume_from_checkpoint, "pytorch_model.bin"
|
|
|
|
|
) # Full checkpoint
|
|
|
|
|
if not os.path.exists(checkpoint_name):
|
|
|
|
|
checkpoint_name = os.path.join(
|
|
|
|
|
resume_from_checkpoint, "adapter_model.bin"
|
|
|
|
|
) # only LoRA model - LoRA config above has to fit
|
|
|
|
|
resume_from_checkpoint = (
|
|
|
|
|
False # So the trainer won't try loading its state
|
|
|
|
|
)
|
|
|
|
|
# The two files above have a different name depending on how they were saved, but are actually the same.
|
|
|
|
|
if os.path.exists(checkpoint_name):
|
|
|
|
|
print(f"Restarting from {checkpoint_name}")
|
|
|
|
|
adapters_weights = torch.load(checkpoint_name)
|
|
|
|
|
else:
|
|
|
|
|
print(f"Checkpoint {checkpoint_name} not found")
|
|
|
|
|
|
|
|
|
|
# model.print_trainable_parameters() # Be more transparent about the % of trainable params.
|
|
|
|
|
|
|
|
|
|
if val_set_size > 0:
|
|
|
|
|
train_val = data["train"].train_test_split(
|
|
|
|
|
test_size=val_set_size, shuffle=True, seed=42
|
|
|
|
|
)
|
|
|
|
|
train_data = (
|
|
|
|
|
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
|
2025-03-17 14:49:22 +08:00
|
|
|
|
|
2023-10-11 11:51:08 +08:00
|
|
|
|
)
|
2025-03-17 14:49:22 +08:00
|
|
|
|
train_data = ensure_consistent_keys(train_data)
|
2023-10-11 11:51:08 +08:00
|
|
|
|
val_data = (
|
|
|
|
|
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
2025-03-17 14:49:22 +08:00
|
|
|
|
train_data = ensure_consistent_keys(train_data)
|
2023-10-11 11:51:08 +08:00
|
|
|
|
val_data = None
|
|
|
|
|
|
|
|
|
|
if not ddp and torch.cuda.device_count() > 1:
|
|
|
|
|
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
|
|
|
|
|
model.is_parallelizable = True
|
|
|
|
|
model.model_parallel = True
|
|
|
|
|
|
|
|
|
|
trainer = transformers.Trainer(
|
2025-03-17 14:49:22 +08:00
|
|
|
|
model=final_model,
|
|
|
|
|
data_collator=custom_collate_fn,
|
2023-10-11 11:51:08 +08:00
|
|
|
|
train_dataset=train_data,
|
|
|
|
|
eval_dataset=val_data,
|
|
|
|
|
args=transformers.TrainingArguments(
|
|
|
|
|
per_device_train_batch_size=micro_batch_size,
|
|
|
|
|
gradient_accumulation_steps=gradient_accumulation_steps,
|
|
|
|
|
warmup_steps=100,
|
|
|
|
|
num_train_epochs=num_epochs,
|
|
|
|
|
learning_rate=learning_rate,
|
|
|
|
|
fp16=True,
|
|
|
|
|
logging_steps=10,
|
|
|
|
|
optim="adamw_hf",
|
|
|
|
|
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
|
|
|
|
save_strategy="steps",
|
|
|
|
|
eval_steps=None,
|
|
|
|
|
save_steps=5000,
|
|
|
|
|
output_dir=output_dir,
|
|
|
|
|
save_total_limit=2,
|
|
|
|
|
load_best_model_at_end=True if val_set_size > 0 else False,
|
|
|
|
|
ddp_find_unused_parameters=False if ddp else None,
|
|
|
|
|
group_by_length=group_by_length,
|
|
|
|
|
report_to=None,
|
|
|
|
|
run_name=None,
|
|
|
|
|
),
|
|
|
|
|
)
|
2025-03-17 14:49:22 +08:00
|
|
|
|
# final_model.config.use_cache = False
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
if torch.__version__ >= "2" and sys.platform != "win32":
|
2025-03-17 14:49:22 +08:00
|
|
|
|
final_model = torch.compile(model)
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
final_model.save_pretrained(output_dir)
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
2025-03-17 14:49:22 +08:00
|
|
|
|
# ⭐ 确保embeddings存在再保存
|
|
|
|
|
if hasattr(final_model, "embeddings"):
|
|
|
|
|
torch.save(final_model.embeddings, os.path.join(output_dir, "embeddings.pth"))
|
|
|
|
|
else:
|
|
|
|
|
print("[WARNING] final_model没有embeddings属性,跳过保存。")
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
final_model.model.save_pretrained(os.path.join(output_dir, "peft_model"))
|
|
|
|
|
print(f"[INFO] PEFT模型保存到 {os.path.join(output_dir, 'peft_model')}")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"[WARNING] 保存PEFT模型时出错: {e}")
|
2023-10-11 11:51:08 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
fire.Fire(train)
|