de0674ccf7
* update rag/src/data_processing.py * Add files via upload allow user to load embedding & rerank models from cache * Add files via upload embedding_path = os.path.join(model_dir, 'embedding_model') rerank_path = os.path.join(model_dir, 'rerank_model') * 测试push dev 测试push dev * Add files via upload 两个母亲多轮对话数据集合并、清理和去重之后,得到 2439 条多轮对话数据(每条有6-8轮对话)。 * optimize deduplicate.py Add time print information save duplicate dataset as well remove print(content) * add base model qlora fintuning config file: internlm2_7b_base_qlora_e10_M_1e4_32_64.py * add full finetune code from internlm2 * other 2 configs for base model * update cli_internlm2.py three methods to load model 1. download model in openxlab 2. download model in modelscope 3. offline model * create upload_modelscope.py * add base model and update personal contributions * add README.md for Emollm_Scientist * Create README_internlm2_7b_base_qlora.md InternLM2 7B Base QLoRA 微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * update * [DOC]README_scientist.md * delete config * format update * upload xlab * add README_Model_Uploading.md and images * modelscope model upload * Modify Recent Updates * update daddy-like Boy-Friend EmoLLM * update model uploading with openxlab * update model uploading with openxlab --------- Co-authored-by: zealot52099 <songyan5209@163.com> Co-authored-by: xzw <62385492+aJupyter@users.noreply.github.com> Co-authored-by: zealot52099 <67356208+zealot52099@users.noreply.github.com> Co-authored-by: Bryce Wang <90940753+brycewang2018@users.noreply.github.com> Co-authored-by: HongCheng <kwchenghong@gmail.com> |
||
---|---|---|
.. | ||
images | ||
airen-internlm2_chat_7b_qlora.py | ||
aiwei-internlm2_chat_7b_qlora.py | ||
baichuan2_13b_chat_qlora_alpaca_e3.py | ||
chatglm3_6b_lora_alpaca_e3.py | ||
ChatGLM3-6b-ft_EN.md | ||
ChatGLM3-6b-ft.md | ||
deepseek_moe_16b_chat_qlora_oasst1_e3.py | ||
internlm2_1_8b_full_alpaca_e3.py | ||
internlm2_7b_base_qlora_e3_M_1e4_32_64.py | ||
internlm2_7b_base_qlora_e3.py | ||
internlm2_7b_base_qlora_e10_b8_16_32.py | ||
internlm2_7b_base_qlora_e10_M_1e4_32_64.py | ||
internlm2_7b_chat_qlora_e3_scienctist.py | ||
internlm2_7b_chat_qlora_e3.py | ||
internlm2_chat_7b_full_finetune_custom_dataset_e1.py | ||
internlm2_chat_7b_full.py | ||
mixtral_8x7b_instruct_qlora_oasst1_e3.py | ||
qwen1_5_0_5_B_full.py | ||
qwen_7b_chat_qlora_e3.py | ||
README_EN.md | ||
README_internlm2_7b_base_qlora.md | ||
README_scientist.md | ||
README.md | ||
requirements.txt | ||
upload_modelscope.py |
Fine-Tuning Guide
- This project has undergone fine-tuning not only on mental health datasets but also on self-awareness, and here is the detailed guide for fine-tuning.
I. Fine-Tuning Based on Xtuner 🎉🎉🎉🎉🎉
Environment Setup
datasets==2.16.1
deepspeed==0.13.1
einops==0.7.0
flash_attn==2.5.0
mmengine==0.10.2
openxlab==0.0.34
peft==0.7.1
sentencepiece==0.1.99
torch==2.1.2
transformers==4.36.2
xtuner==0.1.11
You can also install them all at once by
cd xtuner_config/
pip3 install -r requirements.txt
Fine-Tuning
cd xtuner_config/
xtuner train internlm2_7b_chat_qlora_e3.py --deepspeed deepspeed_zero2
Convert the Obtained PTH Model to a HuggingFace Model
That is: Generate the Adapter folder
cd xtuner_config/
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert pth_to_hf internlm2_7b_chat_qlora_e3.py ./work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_3.pth ./hf
Merge the HuggingFace Adapter with the Large Language Model
xtuner convert merge ./internlm2-chat-7b ./hf ./merged --max-shard-size 2GB
# xtuner convert merge \
# ${NAME_OR_PATH_TO_LLM} \
# ${NAME_OR_PATH_TO_ADAPTER} \
# ${SAVE_PATH} \
# --max-shard-size 2GB
Testing
cd demo/
python cli_internlm2.py
II. Fine-Tuning Based on Transformers🎉🎉🎉🎉🎉
- Please refer to the ChatGLM3-6b lora fine-tuning guide.
Other
Feel free to give xtuner and EmoLLM a star~
🎉🎉🎉🎉🎉