de0674ccf7
* update rag/src/data_processing.py * Add files via upload allow user to load embedding & rerank models from cache * Add files via upload embedding_path = os.path.join(model_dir, 'embedding_model') rerank_path = os.path.join(model_dir, 'rerank_model') * 测试push dev 测试push dev * Add files via upload 两个母亲多轮对话数据集合并、清理和去重之后,得到 2439 条多轮对话数据(每条有6-8轮对话)。 * optimize deduplicate.py Add time print information save duplicate dataset as well remove print(content) * add base model qlora fintuning config file: internlm2_7b_base_qlora_e10_M_1e4_32_64.py * add full finetune code from internlm2 * other 2 configs for base model * update cli_internlm2.py three methods to load model 1. download model in openxlab 2. download model in modelscope 3. offline model * create upload_modelscope.py * add base model and update personal contributions * add README.md for Emollm_Scientist * Create README_internlm2_7b_base_qlora.md InternLM2 7B Base QLoRA 微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * [DOC]EmoLLM_Scientist微调指南 * update * [DOC]README_scientist.md * delete config * format update * upload xlab * add README_Model_Uploading.md and images * modelscope model upload * Modify Recent Updates * update daddy-like Boy-Friend EmoLLM * update model uploading with openxlab * update model uploading with openxlab --------- Co-authored-by: zealot52099 <songyan5209@163.com> Co-authored-by: xzw <62385492+aJupyter@users.noreply.github.com> Co-authored-by: zealot52099 <67356208+zealot52099@users.noreply.github.com> Co-authored-by: Bryce Wang <90940753+brycewang2018@users.noreply.github.com> Co-authored-by: HongCheng <kwchenghong@gmail.com> |
||
---|---|---|
.. | ||
processed | ||
aiwei.json | ||
data_pro.json | ||
data.json | ||
deduplicate.py | ||
LICENSE | ||
mother.json | ||
multi_turn_dataset_1.json | ||
multi_turn_dataset_2.json | ||
README_EN.md | ||
README.md | ||
scientist.json | ||
single_turn_dataset_1.json | ||
single_turn_dataset_2.json | ||
SoulStar_data.json | ||
tiangou.json |
EmoLLM's datasets
- Category of dataset: General and Role-play
- Type of data: QA and Conversation
- Summary: General(6 datasets), Role-play(3 datasets)
Category
- General: generic dataset, including psychological Knowledge, counseling technology, etc.
- Role-play: role-playing dataset, including character-specific conversation style data, etc.
Type
- QA: question-and-answer pair
- Conversation: multi-turn consultation dialogue
Summary
Category | Dataset | Type | Total |
---|---|---|---|
General | data | Conversation | 5600+ |
General | data_pro | Conversation | 36500+ |
General | multi_turn_dataset_1 | Conversation | 36,000+ |
General | multi_turn_dataset_2 | Conversation | 27,000+ |
General | single_turn_dataset_1 | QA | 14000+ |
General | single_turn_dataset_2 | QA | 18300+ |
Role-play | aiwei | Conversation | 4000+ |
Role-play | SoulStar | QA | 11200+ |
Role-play | tiangou | Conversation | 3900+ |
…… | …… | …… | …… |
Source
General:
- dataset
data
from this repo - dataset
data_pro
from this repo - dataset
multi_turn_dataset_1
from Smile - dataset
multi_turn_dataset_2
from CPsyCounD - dataset
single_turn_dataset_1
from this repo - dataset
single_turn_dataset_2
from this repo
Role-play:
- dataset
aiwei
from this repo - dataset
tiangou
from this repo - dataset
SoulStar
from SoulStar
Dataset Deduplication: Combine absolute matching with fuzzy matching (Simhash) algorithms to deduplicate the dataset, thereby enhancing the effectiveness of the fine-tuning model. While ensuring the high quality of the dataset, the risk of losing important data due to incorrect matches can be reduced via adjusting the threshold.