OliveSensorAPI/demo/cli_internlm2.py
Anooyman de0674ccf7
Update main code (#2)
* update rag/src/data_processing.py

* Add files via upload

allow user to load embedding & rerank models from cache

* Add files via upload

embedding_path = os.path.join(model_dir, 'embedding_model')  
rerank_path = os.path.join(model_dir, 'rerank_model')

* 测试push dev

测试push dev

* Add files via upload

两个母亲多轮对话数据集合并、清理和去重之后,得到 2439 条多轮对话数据(每条有6-8轮对话)。

* optimize deduplicate.py

Add time print information
save duplicate dataset as well
remove print(content)

* add base model qlora fintuning config file: internlm2_7b_base_qlora_e10_M_1e4_32_64.py

* add full finetune code from internlm2

* other 2 configs for base model

* update cli_internlm2.py

 three methods to load model

1. download model in openxlab
2. download model in modelscope
3. offline model

* create upload_modelscope.py

* add base model and update personal contributions

* add README.md for Emollm_Scientist

* Create README_internlm2_7b_base_qlora.md

InternLM2 7B Base QLoRA 微调指南

* [DOC]EmoLLM_Scientist微调指南

* [DOC]EmoLLM_Scientist微调指南

* [DOC]EmoLLM_Scientist微调指南

* [DOC]EmoLLM_Scientist微调指南

* [DOC]EmoLLM_Scientist微调指南

* [DOC]EmoLLM_Scientist微调指南

* update

* [DOC]README_scientist.md

* delete config

* format update

* upload xlab

* add README_Model_Uploading.md and images

* modelscope model upload

* Modify Recent Updates

* update daddy-like Boy-Friend EmoLLM

* update model uploading with openxlab

* update model uploading with openxlab

---------

Co-authored-by: zealot52099 <songyan5209@163.com>
Co-authored-by: xzw <62385492+aJupyter@users.noreply.github.com>
Co-authored-by: zealot52099 <67356208+zealot52099@users.noreply.github.com>
Co-authored-by: Bryce Wang <90940753+brycewang2018@users.noreply.github.com>
Co-authored-by: HongCheng <kwchenghong@gmail.com>
2024-03-24 11:51:19 +08:00

33 lines
1.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from openxlab.model import download
from modelscope import snapshot_download
# download model in openxlab
model_name_or_path =download(model_repo='ajupyter/EmoLLM_internlm2_7b_full',
output='EmoLLM_internlm2_7b_full')
# download model in modelscope
model_name_or_path = snapshot_download('chg0901/EmoLLM-InternLM7B-base')
# offline model
# model_name_or_path = "/root/StableCascade/emollm2/EmoLLM/xtuner_config/merged"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()
system_prompt = '你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。'
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("User >>> ")
input_text.replace(' ', '')
if input_text == "exit":
break
response, history = model.chat(tokenizer, input_text, history=messages)
messages.append((input_text, response))
print(f"robot >>> {response}")