.. | ||
images | ||
airen-internlm2_chat_7b_qlora.py | ||
aiwei-internlm2_chat_7b_qlora.py | ||
baichuan2_13b_chat_qlora_alpaca_e3.py | ||
chatglm3_6b_lora_alpaca_e3.py | ||
ChatGLM3-6b-ft_EN.md | ||
ChatGLM3-6b-ft.md | ||
deepseek_moe_16b_chat_qlora_oasst1_e3.py | ||
internlm2_1_8b_full_alpaca_e3.py | ||
internlm2_7b_base_qlora_e3_M_1e4_32_64.py | ||
internlm2_7b_base_qlora_e3.py | ||
internlm2_7b_base_qlora_e10_b8_16_32.py | ||
internlm2_7b_base_qlora_e10_M_1e4_32_64.py | ||
internlm2_7b_chat_qlora_e3.py | ||
internlm2_chat_7b_full_finetune_custom_dataset_e1.py | ||
internlm2_chat_7b_full.py | ||
mixtral_8x7b_instruct_qlora_oasst1_e3.py | ||
qwen1_5_0_5_B_full.py | ||
qwen_7b_chat_qlora_e3.py | ||
README_EN.md | ||
README.md | ||
requirements.txt | ||
upload_modelscope.py |
Fine-Tuning Guide
- This project has undergone fine-tuning not only on mental health datasets but also on self-awareness, and here is the detailed guide for fine-tuning.
I. Fine-Tuning Based on Xtuner 🎉🎉🎉🎉🎉
Environment Setup
datasets==2.16.1
deepspeed==0.13.1
einops==0.7.0
flash_attn==2.5.0
mmengine==0.10.2
openxlab==0.0.34
peft==0.7.1
sentencepiece==0.1.99
torch==2.1.2
transformers==4.36.2
xtuner==0.1.11
You can also install them all at once by
cd xtuner_config/
pip3 install -r requirements.txt
Fine-Tuning
cd xtuner_config/
xtuner train internlm2_7b_chat_qlora_e3.py --deepspeed deepspeed_zero2
Convert the Obtained PTH Model to a HuggingFace Model
That is: Generate the Adapter folder
cd xtuner_config/
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert pth_to_hf internlm2_7b_chat_qlora_e3.py ./work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_3.pth ./hf
Merge the HuggingFace Adapter with the Large Language Model
xtuner convert merge ./internlm2-chat-7b ./hf ./merged --max-shard-size 2GB
# xtuner convert merge \
# ${NAME_OR_PATH_TO_LLM} \
# ${NAME_OR_PATH_TO_ADAPTER} \
# ${SAVE_PATH} \
# --max-shard-size 2GB
Testing
cd demo/
python cli_internlm2.py
II. Fine-Tuning Based on Transformers🎉🎉🎉🎉🎉
- Please refer to the ChatGLM3-6b lora fine-tuning guide.
Other
Feel free to give xtuner and EmoLLM a star~
🎉🎉🎉🎉🎉