OliveSensorAPI/scripts/qa_generation/QA_clean.py
2024-03-16 20:45:30 +08:00

112 lines
4.0 KiB
Python

import os
import json
import time
from tqdm import tqdm
import concurrent.futures
from datetime import datetime
import numpy as np
from config.config import result_dir, clean_dir, storage_interval, window_size, overlap_size, multi_process_num
from model.qwen import call_qwen_single_turn, call_qwen_Psychology_QA_Pairs
from util.logger import get_logger
from util.data_loader import get_jsonl_file_paths, get_file_list, get_QA_pairs, get_txt_content, capture_qa, merge_sub_qa_generation, save_to_file
logger = get_logger()
def single_thread_generate(thread_num, interval, model_caller, storage_jsonl_path, contents):
storage_counter = 0
judge_list = []
for content in tqdm(contents):
# print('content: ', content)
try:
# model_caller 函数的作用是调用某个预训练的问答生成模型,传递输入内容 content 给模型,然后获取模型的输出 response
response = model_caller(content)
# print('response: ', response)
if response == '1':
content = json.loads(content)
judge_list.append(content)
storage_counter += 1
else:
continue
# 在达到指定的 interval 后,将 storage_list 中的内容保存到指定的文件 storage_jsonl_path 中
if storage_counter % interval == 0:
save_to_file(storage_jsonl_path, judge_list)
storage_counter = 0
judge_list = []
except Exception as exc:
logger.error("QA generation error : %s" % (exc))
# 最后,如果 storage_list 中还有剩余内容,也会将其保存到文件中。
if judge_list:
save_to_file(storage_jsonl_path, judge_list)
judge_list = []
"""
生成 QA 对
model_name: 可调用的模型名称,暂时只实现了 qwen
interval: 存储间隔,即每隔多少条存一次文件,过密的间隔会增大 IO 开销
"""
def clean_qa(
model_name: str = 'qwen',
interval: int = 10,
):
# current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if model_name == 'qwen':
model_caller = call_qwen_Psychology_QA_Pairs
else:
logger.warning('This model is currently not supported and will call the default model - qwen.')
model_caller = call_qwen_Psychology_QA_Pairs
model_name = 'qwen'
logger.info(f'The called model is: {model_name}.')
logger.info(f'The storage interval is: {interval}.')
file_lists = get_jsonl_file_paths() # 数据整合文件夹下所有.jsonl文件的地址
for file_path in file_lists:
# 一个jsonl文件的所有QA Pairs
contents = get_QA_pairs(file_path)
# print(contents)
file_name = os.path.basename(file_path)
print(file_name)
storage_jsonl_path = os.path.join(
clean_dir, f'{file_name}')
logger.info(f'The generated QA will be stored in {storage_jsonl_path}.')
contents_array = np.array(contents)
chunks = np.array_split(contents_array, multi_process_num)
# 构建并发参数 list
parameters_list = list()
for thread_num, chunk in enumerate(chunks):
parameters_list.append(
[thread_num, interval, model_caller, storage_jsonl_path, list(chunk)]
)
with concurrent.futures.ThreadPoolExecutor(max_workers=multi_process_num) as executor:
# 循环调用 single_thread_generate 函数,每次赋予参数 parameters
futures = [executor.submit(single_thread_generate, *parameters) for parameters in parameters_list]
for future in concurrent.futures.as_completed(futures):
try:
future.result()
except Exception as exc:
logger.error("Thread generated an exception: %s" % (exc))
merge_sub_qa_generation(result_dir, storage_jsonl_path)
if __name__ == '__main__':
# 创建washed文件夹
os.makedirs('./data/cleaned', exist_ok=True)
clean_qa(interval=storage_interval)