.. | ||
processed | ||
aiwei.json | ||
data_pro.json | ||
data.json | ||
LICENSE | ||
mother_v1.json | ||
mother_v2.json | ||
multi_turn_dataset_1.json | ||
multi_turn_dataset_2.json | ||
README_EN.md | ||
README.md | ||
scientist.json | ||
self_cognition_EmoLLM.json | ||
single_turn_dataset_1.json | ||
single_turn_dataset_2.json | ||
SoulStar_data.json | ||
tiangou.json |
EmoLLM's datasets
- Category of dataset: General and Role-play
- Type of data: QA and Conversation
- Summary: General(6 datasets), Role-play(5 datasets)
Category
- General: generic dataset, including psychological Knowledge, counseling technology, etc.
- Role-play: role-playing dataset, including character-specific conversation style data, etc.
Type
- QA: question-and-answer pair
- Conversation: multi-turn consultation dialogue
Summary
Category | Dataset | Type | Total |
---|---|---|---|
General | data | Conversation | 5600+ |
General | data_pro | Conversation | 36,500+ |
General | multi_turn_dataset_1 | Conversation | 36,000+ |
General | multi_turn_dataset_2 | Conversation | 27,000+ |
General | single_turn_dataset_1 | QA | 14,000+ |
General | single_turn_dataset_2 | QA | 18,300+ |
Role-play | aiwei | Conversation | 4000+ |
Role-play | SoulStar | QA | 11,200+ |
Role-play | tiangou | Conversation | 3900+ |
Role-play | mother | Conversation | 40,300+ |
Role-play | scientist | Conversation | 28,400+ |
…… | …… | …… | …… |
Source
General:
- dataset
data
from this repo - dataset
data_pro
from this repo - dataset
multi_turn_dataset_1
from Smile - dataset
multi_turn_dataset_2
from CPsyCounD - dataset
single_turn_dataset_1
from this repo - dataset
single_turn_dataset_2
from this repo
Role-play:
- dataset
aiwei
from this repo - dataset
tiangou
from this repo - dataset
SoulStar
from SoulStar - dataset
mother
from this repo - dataset
scientist
from this repo
Dataset Deduplication: Combine absolute matching with fuzzy matching (Simhash) algorithms to deduplicate the dataset, thereby enhancing the effectiveness of the fine-tuning model. While ensuring the high quality of the dataset, the risk of losing important data due to incorrect matches can be reduced by adjusting the threshold.