219 lines
7.6 KiB
Python
219 lines
7.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
||
import torch
|
||
from datasets import load_dataset
|
||
from mmengine.dataset import DefaultSampler
|
||
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
||
LoggerHook, ParamSchedulerHook)
|
||
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
||
from peft import LoraConfig
|
||
from torch.optim import AdamW
|
||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||
BitsAndBytesConfig)
|
||
|
||
from xtuner.dataset import process_hf_dataset
|
||
from xtuner.dataset.collate_fns import default_collate_fn
|
||
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
||
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
||
VarlenAttnArgsToMessageHubHook)
|
||
from xtuner.engine.runner import TrainLoop
|
||
from xtuner.model import SupervisedFinetune
|
||
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
||
|
||
from mmengine.visualization import Visualizer,WandbVisBackend, TensorboardVisBackend
|
||
|
||
#######################################################################
|
||
# PART 1 Settings #
|
||
#######################################################################
|
||
# Model
|
||
pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b'
|
||
# /root/share/model_repos/internlm2-chat-7b
|
||
use_varlen_attn = False
|
||
|
||
# Data
|
||
data_path = './aiwei.json'
|
||
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
||
max_length = 2048
|
||
pack_to_max_length = True
|
||
|
||
# Scheduler & Optimizer
|
||
batch_size = 16 # per_device
|
||
accumulative_counts = 1
|
||
dataloader_num_workers = 0
|
||
max_epochs = 5
|
||
optim_type = AdamW
|
||
lr = 1e-5
|
||
betas = (0.9, 0.999)
|
||
weight_decay = 0.0001
|
||
max_norm = 1 # grad clip
|
||
warmup_ratio = 0.03
|
||
|
||
# Save
|
||
save_steps = 100
|
||
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
||
|
||
# Evaluate the generation performance during the training
|
||
evaluation_freq = 100
|
||
SYSTEM = "现在你是一个拥有丰富心理学知识的温柔御姐艾薇医生,我有一些心理问题,请你用专业的知识和温柔的口吻帮我解决,可以生成一些可爱的Emoji表情符号或者文本符号。"
|
||
evaluation_inputs = [
|
||
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
|
||
]
|
||
|
||
#######################################################################
|
||
# PART 2 Model & Tokenizer #
|
||
#######################################################################
|
||
tokenizer = dict(
|
||
type=AutoTokenizer.from_pretrained,
|
||
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||
trust_remote_code=True,
|
||
padding_side='right')
|
||
|
||
model = dict(
|
||
type=SupervisedFinetune,
|
||
use_varlen_attn=use_varlen_attn,
|
||
llm=dict(
|
||
type=AutoModelForCausalLM.from_pretrained,
|
||
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||
trust_remote_code=True,
|
||
torch_dtype=torch.float16,
|
||
quantization_config=dict(
|
||
type=BitsAndBytesConfig,
|
||
load_in_4bit=True,
|
||
load_in_8bit=False,
|
||
llm_int8_threshold=6.0,
|
||
llm_int8_has_fp16_weight=False,
|
||
bnb_4bit_compute_dtype=torch.float16,
|
||
bnb_4bit_use_double_quant=True,
|
||
bnb_4bit_quant_type='nf4')),
|
||
lora=dict(
|
||
type=LoraConfig,
|
||
r=64,
|
||
lora_alpha=16,
|
||
lora_dropout=0.1,
|
||
bias='none',
|
||
task_type='CAUSAL_LM'))
|
||
|
||
#######################################################################
|
||
# PART 3 Dataset & Dataloader #
|
||
#######################################################################
|
||
alpaca_en = dict(
|
||
type=process_hf_dataset,
|
||
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
|
||
tokenizer=tokenizer,
|
||
max_length=max_length,
|
||
dataset_map_fn=None,
|
||
template_map_fn=dict(
|
||
type=template_map_fn_factory, template=prompt_template),
|
||
remove_unused_columns=True,
|
||
shuffle_before_pack=True,
|
||
pack_to_max_length=pack_to_max_length,
|
||
use_varlen_attn=use_varlen_attn)
|
||
|
||
train_dataloader = dict(
|
||
batch_size=batch_size,
|
||
num_workers=dataloader_num_workers,
|
||
dataset=alpaca_en,
|
||
sampler=dict(type=DefaultSampler, shuffle=True),
|
||
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
||
|
||
#######################################################################
|
||
# PART 4 Scheduler & Optimizer #
|
||
#######################################################################
|
||
# optimizer
|
||
optim_wrapper = dict(
|
||
type=AmpOptimWrapper,
|
||
optimizer=dict(
|
||
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
||
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
||
accumulative_counts=accumulative_counts,
|
||
loss_scale='dynamic',
|
||
dtype='float16')
|
||
|
||
# learning policy
|
||
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
||
param_scheduler = [
|
||
dict(
|
||
type=LinearLR,
|
||
start_factor=1e-5,
|
||
by_epoch=True,
|
||
begin=0,
|
||
end=warmup_ratio * max_epochs,
|
||
convert_to_iter_based=True),
|
||
dict(
|
||
type=CosineAnnealingLR,
|
||
eta_min=0.0,
|
||
by_epoch=True,
|
||
begin=warmup_ratio * max_epochs,
|
||
end=max_epochs,
|
||
convert_to_iter_based=True)
|
||
]
|
||
|
||
# train, val, test setting
|
||
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
||
|
||
#######################################################################
|
||
# PART 5 Runtime #
|
||
#######################################################################
|
||
# Log the dialogue periodically during the training process, optional
|
||
custom_hooks = [
|
||
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
||
dict(
|
||
type=EvaluateChatHook,
|
||
tokenizer=tokenizer,
|
||
every_n_iters=evaluation_freq,
|
||
evaluation_inputs=evaluation_inputs,
|
||
system=SYSTEM,
|
||
prompt_template=prompt_template)
|
||
]
|
||
|
||
if use_varlen_attn:
|
||
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
||
|
||
# configure default hooks
|
||
default_hooks = dict(
|
||
# record the time of every iteration.
|
||
timer=dict(type=IterTimerHook),
|
||
# print log every 10 iterations.
|
||
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
||
# enable the parameter scheduler.
|
||
param_scheduler=dict(type=ParamSchedulerHook),
|
||
# save checkpoint per `save_steps`.
|
||
checkpoint=dict(
|
||
type=CheckpointHook,
|
||
by_epoch=False,
|
||
interval=save_steps,
|
||
max_keep_ckpts=save_total_limit),
|
||
# set sampler seed in distributed evrionment.
|
||
sampler_seed=dict(type=DistSamplerSeedHook),
|
||
)
|
||
|
||
# configure environment
|
||
env_cfg = dict(
|
||
# whether to enable cudnn benchmark
|
||
cudnn_benchmark=False,
|
||
# set multi process parameters
|
||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||
# set distributed parameters
|
||
dist_cfg=dict(backend='nccl'),
|
||
)
|
||
|
||
# set visualizer
|
||
visualizer = dict(
|
||
type=Visualizer,
|
||
vis_backends=[dict(type=WandbVisBackend)]
|
||
)
|
||
|
||
# set log level
|
||
log_level = 'INFO'
|
||
|
||
# load from which checkpoint
|
||
load_from = None
|
||
|
||
# whether to resume training from the loaded checkpoint
|
||
resume = True
|
||
|
||
# Defaults to use random seed and disable `deterministic`
|
||
randomness = dict(seed=None, deterministic=False)
|
||
|
||
# set log processor
|
||
log_processor = dict(by_epoch=False)
|