61 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import SparkApi
 | ||
| from prompt import *
 | ||
| from tqdm import tqdm
 | ||
| 
 | ||
| # 以下密钥信息从控制台获取
 | ||
| appid = "f0f73de5"  # 填写控制台中获取的 APPID 信息
 | ||
| api_secret = "YzkyYjQwMTU0MGZjMmUzMGE1Y2ZjYzBk"  # 填写控制台中获取的 APISecret 信息
 | ||
| api_key = "5773f6f95563708de994d17b7ea5d414"  # 填写控制台中获取的 APIKey 信息
 | ||
| 
 | ||
| # 用于配置大模型版本,默认“general/generalv2”
 | ||
| domain = "4.0Ultra"  # v1.5版本
 | ||
| # domain = "generalv2"    # v2.0版本
 | ||
| # 云端环境的服务地址
 | ||
| Spark_url = "wss://spark-api.xf-yun.com/v4.0/chat"  # v1.5环境的地址
 | ||
| # Spark_url = "ws://spark-api.xf-yun.com/v2.1/chat"  # v2.0环境的地址
 | ||
| 
 | ||
| 
 | ||
| text = []
 | ||
| 
 | ||
| 
 | ||
| # length = 0
 | ||
| 
 | ||
| def getText(role, content):
 | ||
|     jsoncon = {}
 | ||
|     jsoncon["role"] = role
 | ||
|     jsoncon["content"] = content
 | ||
|     text.append(jsoncon)
 | ||
|     return text
 | ||
| 
 | ||
| 
 | ||
| def getlength(text):
 | ||
|     length = 0
 | ||
|     for content in text:
 | ||
|         temp = content["content"]
 | ||
|         leng = len(temp)
 | ||
|         length += leng
 | ||
|     return length
 | ||
| 
 | ||
| 
 | ||
| def checklen(text):
 | ||
|     while (getlength(text) > 8000):
 | ||
|         del text[0]
 | ||
|     return text
 | ||
| 
 | ||
| 
 | ||
| if __name__ == '__main__':
 | ||
|     text.clear()
 | ||
|     file_name = 'train3.jsonl'
 | ||
|     conversations = []
 | ||
|     for i in tqdm(range(200)):
 | ||
|         Input = prompt(random.randint(0, 16))
 | ||
|         question = checklen(getText("user", Input))
 | ||
|         SparkApi.answer = ""
 | ||
|         SparkApi.main(appid, api_key, api_secret, Spark_url, domain, question)
 | ||
|         getText("assistant", SparkApi.answer)
 | ||
|         conversations.append(ChatGLM3_6B(SparkApi.answer))
 | ||
|         for item in conversations:
 | ||
|             save_jsonl(item, file_name)
 | ||
|         conversations.clear()
 | ||
| 
 |