279 lines
11 KiB
Python
279 lines
11 KiB
Python
import copy
|
|
import os
|
|
import warnings
|
|
from dataclasses import asdict, dataclass
|
|
from typing import Callable, List, Optional
|
|
|
|
import streamlit as st
|
|
import torch
|
|
from torch import nn
|
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
|
|
from transformers.utils import logging
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class GenerationConfig:
|
|
# this config is used for chat to provide more diversity
|
|
max_length: int = 32768
|
|
top_p: float = 0.8
|
|
temperature: float = 0.8
|
|
do_sample: bool = True
|
|
repetition_penalty: float = 1.005
|
|
|
|
|
|
@torch.inference_mode()
|
|
def generate_interactive(
|
|
model,
|
|
tokenizer,
|
|
prompt,
|
|
generation_config: Optional[GenerationConfig] = None,
|
|
logits_processor: Optional[LogitsProcessorList] = None,
|
|
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
|
additional_eos_token_id: Optional[int] = None,
|
|
**kwargs,
|
|
):
|
|
inputs = tokenizer([prompt], padding=True, return_tensors="pt")
|
|
input_length = len(inputs["input_ids"][0])
|
|
for k, v in inputs.items():
|
|
inputs[k] = v.cuda()
|
|
input_ids = inputs["input_ids"]
|
|
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] # noqa: F841 # pylint: disable=W0612
|
|
if generation_config is None:
|
|
generation_config = model.generation_config
|
|
generation_config = copy.deepcopy(generation_config)
|
|
model_kwargs = generation_config.update(**kwargs)
|
|
bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612
|
|
generation_config.bos_token_id,
|
|
generation_config.eos_token_id,
|
|
)
|
|
if isinstance(eos_token_id, int):
|
|
eos_token_id = [eos_token_id]
|
|
if additional_eos_token_id is not None:
|
|
eos_token_id.append(additional_eos_token_id)
|
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
|
if has_default_max_length and generation_config.max_new_tokens is None:
|
|
warnings.warn(
|
|
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
|
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
|
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
|
UserWarning,
|
|
)
|
|
elif generation_config.max_new_tokens is not None:
|
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
|
if not has_default_max_length:
|
|
logger.warn( # pylint: disable=W4902
|
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
|
"Please refer to the documentation for more information. "
|
|
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
|
UserWarning,
|
|
)
|
|
|
|
if input_ids_seq_length >= generation_config.max_length:
|
|
input_ids_string = "input_ids"
|
|
logger.warning(
|
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
|
" increasing `max_new_tokens`."
|
|
)
|
|
|
|
# 2. Set generation parameters if not already defined
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
|
|
|
logits_processor = model._get_logits_processor(
|
|
generation_config=generation_config,
|
|
input_ids_seq_length=input_ids_seq_length,
|
|
encoder_input_ids=input_ids,
|
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
|
logits_processor=logits_processor,
|
|
)
|
|
|
|
stopping_criteria = model._get_stopping_criteria(
|
|
generation_config=generation_config, stopping_criteria=stopping_criteria
|
|
)
|
|
logits_warper = model._get_logits_warper(generation_config)
|
|
|
|
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
|
scores = None
|
|
while True:
|
|
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
|
# forward pass to get next token
|
|
outputs = model(
|
|
**model_inputs,
|
|
return_dict=True,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
)
|
|
|
|
next_token_logits = outputs.logits[:, -1, :]
|
|
|
|
# pre-process distribution
|
|
next_token_scores = logits_processor(input_ids, next_token_logits)
|
|
next_token_scores = logits_warper(input_ids, next_token_scores)
|
|
|
|
# sample
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
|
if generation_config.do_sample:
|
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
|
else:
|
|
next_tokens = torch.argmax(probs, dim=-1)
|
|
|
|
# update generated ids, model inputs, and length for next step
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
model_kwargs = model._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
|
|
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())
|
|
|
|
output_token_ids = input_ids[0].cpu().tolist()
|
|
output_token_ids = output_token_ids[input_length:]
|
|
for each_eos_token_id in eos_token_id:
|
|
if output_token_ids[-1] == each_eos_token_id:
|
|
output_token_ids = output_token_ids[:-1]
|
|
response = tokenizer.decode(output_token_ids)
|
|
|
|
yield response
|
|
# stop when each sentence is finished, or if we exceed the maximum length
|
|
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
|
break
|
|
|
|
|
|
def on_btn_click():
|
|
del st.session_state.messages
|
|
|
|
|
|
@st.cache_resource
|
|
def load_model():
|
|
|
|
print('pip install modelscope websockets')
|
|
os.system(f'pip install modelscope websockets==11.0.3')
|
|
|
|
######## old model downloading method with modelscope ########
|
|
# model_name0 = "./EmoLLM-Llama3-8B-Instruct3.0"
|
|
# print(model_name0)
|
|
|
|
# from modelscope import snapshot_download
|
|
|
|
# #模型下载
|
|
# model_name = snapshot_download('chg0901/EmoLLM-Llama3-8B-Instruct3.0',cache_dir=model_name0)
|
|
# print(model_name)
|
|
|
|
# model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16).eval()
|
|
# # model.eval()
|
|
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
######## new model downloading method with openxlab ########
|
|
base_path = './EmoLLM-Llama3-8B-Instruct3.0'
|
|
os.system(f'git clone https://code.openxlab.org.cn/chg0901/EmoLLM-Llama3-8B-Instruct3.0.git {base_path}')
|
|
os.system(f'cd {base_path} && git lfs pull')
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(base_path, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16).eval()
|
|
# model.eval()
|
|
tokenizer = AutoTokenizer.from_pretrained(base_path, trust_remote_code=True)
|
|
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
def prepare_generation_config():
|
|
with st.sidebar:
|
|
# 使用 Streamlit 的 markdown 函数添加 Markdown 文本
|
|
st.image('assets/EmoLLM_logo_L.png', width=1, caption='EmoLLM Logo', use_column_width=True)
|
|
st.markdown("[访问 **EmoLLM** 官方repo: **SmartFlowAI/EmoLLM**](https://github.com/SmartFlowAI/EmoLLM)")
|
|
|
|
max_length = st.slider("Max Length", min_value=8, max_value=32768, value=32768)
|
|
top_p = st.slider("Top P", 0.0, 1.0, 0.8, step=0.01)
|
|
temperature = st.slider("Temperature", 0.0, 1.0, 0.7, step=0.01)
|
|
st.button("Clear Chat History", on_click=on_btn_click)
|
|
|
|
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
|
|
|
|
return generation_config
|
|
|
|
|
|
user_prompt = '<|start_header_id|>user<|end_header_id|>\n\n{user}<|eot_id|>'
|
|
robot_prompt = '<|start_header_id|>assistant<|end_header_id|>\n\n{robot}<|eot_id|>'
|
|
cur_query_prompt = '<|start_header_id|>user<|end_header_id|>\n\n{user}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n'
|
|
|
|
|
|
def combine_history(prompt):
|
|
messages = st.session_state.messages
|
|
meta_instruction = (
|
|
"你是心理健康助手EmoLLM, 由EmoLLM团队打造。\n\n"
|
|
)
|
|
total_prompt =f"<|start_header_id|>system<|end_header_id|>\n\n{meta_instruction}<|eot_id|>\n\n"
|
|
for message in messages:
|
|
cur_content = message["content"]
|
|
if message["role"] == "user":
|
|
cur_prompt = user_prompt.format(user=cur_content)
|
|
elif message["role"] == "robot":
|
|
cur_prompt = robot_prompt.format(robot=cur_content)
|
|
else:
|
|
raise RuntimeError
|
|
total_prompt += cur_prompt
|
|
total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
|
|
return total_prompt
|
|
|
|
|
|
|
|
# torch.cuda.empty_cache()
|
|
print("load model begin.")
|
|
model, tokenizer = load_model()
|
|
print("load model end.")
|
|
|
|
user_avator = "assets/user.png"
|
|
robot_avator = "assets/EmoLLM.png"
|
|
|
|
st.title("EmoLLM Llama3心理咨询室V3.0")
|
|
|
|
generation_config = prepare_generation_config()
|
|
|
|
# Initialize chat history
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = []
|
|
|
|
# Display chat messages from history on app rerun
|
|
for message in st.session_state.messages:
|
|
with st.chat_message(message["role"], avatar=message.get("avatar")):
|
|
st.markdown(message["content"])
|
|
|
|
# Accept user input
|
|
if prompt := st.chat_input("我在这里,准备好倾听你的心声了。"):
|
|
# Display user message in chat message container
|
|
with st.chat_message("user", avatar=user_avator):
|
|
st.markdown(prompt)
|
|
|
|
real_prompt = combine_history(prompt)
|
|
# Add user message to chat history
|
|
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": user_avator})
|
|
|
|
with st.chat_message("robot", avatar=robot_avator):
|
|
message_placeholder = st.empty()
|
|
for cur_response in generate_interactive(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
prompt=real_prompt,
|
|
additional_eos_token_id=128009,
|
|
**asdict(generation_config),
|
|
):
|
|
# Display robot response in chat message container
|
|
message_placeholder.markdown(cur_response + "▌")
|
|
message_placeholder.markdown(cur_response) # pylint: disable=undefined-loop-variable
|
|
# Add robot response to chat history
|
|
st.session_state.messages.append(
|
|
{
|
|
"role": "robot",
|
|
"content": cur_response, # pylint: disable=undefined-loop-variable
|
|
"avatar": robot_avator,
|
|
}
|
|
)
|
|
torch.cuda.empty_cache()
|