import os import json import time from tqdm import tqdm import concurrent.futures from datetime import datetime import numpy as np from config.config import result_dir, storage_interval, window_size, overlap_size, multi_process_num from model.qwen import call_qwen_single_turn from util.logger import get_logger from util.data_loader import get_file_list, get_txt_content, capture_qa, merge_sub_qa_generation, save_to_file logger = get_logger() """ 每个线程产生 QA 对以及存储到子文件中 """ def single_thread_generate(thread_num, interval, model_caller, storage_jsonl_path, contents): storage_counter = 0 storage_list = [] for content in tqdm(contents): try: response = model_caller(content) captured_qa = capture_qa(response) if captured_qa is None: continue storage_list.extend(captured_qa) storage_counter += 1 if storage_counter % interval == 0: save_to_file(storage_jsonl_path, storage_list) storage_counter = 0 storage_list = [] except Exception as exc: logger.error("QA generation error : %s" % (exc)) if storage_list: save_to_file(storage_jsonl_path, storage_list) storage_list = [] """ 生成 QA 对 model_name: 可调用的模型名称,暂时只实现了 qwen interval: 存储间隔,即每隔多少条存一次文件,过密的间隔会增大 IO 开销 """ def generate_qa( model_name: str = 'qwen', interval: int = 10, ): current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") if model_name == 'qwen': model_caller = call_qwen_single_turn else: logger.warning('This model is currently not supported and will call the default model - qwen.') model_caller = call_qwen_single_turn model_name = 'qwen' logger.info(f'The called model is: {model_name}.') logger.info(f'The storage interval is: {interval}.') file_list = get_file_list() storage_counter = 0 storage_list = [] for file_path in file_list: contents = get_txt_content(file_path, window_size=window_size, overlap_size=overlap_size) storage_list = [] _, file_name = os.path.split(file_path) storage_jsonl_path = os.path.join( result_dir, f'{current_time}-{file_name}-{model_name}.jsonl') logger.info(f'The generated QA will be stored in {storage_jsonl_path}.') # 基于并发个数切分 contents 内容 contents_array = np.array(contents) chunks = np.array_split(contents_array, multi_process_num) # 构建并发参数 list parameters_list = list() for thread_num, chunk in enumerate(chunks): parameters_list.append( [thread_num, interval, model_caller, storage_jsonl_path + f'-{thread_num}', list(chunk)] ) # 并发生成 QA 对 with concurrent.futures.ThreadPoolExecutor(max_workers=multi_process_num) as executor: # 创建一个Future列表,它们将对应每个worker_function的结果 futures = [executor.submit(single_thread_generate, *parameters) for parameters in parameters_list] for future in concurrent.futures.as_completed(futures): try: future.result() except Exception as exc: logger.error("Thread generated an exception: %s" % (exc)) merge_sub_qa_generation(result_dir, storage_jsonl_path) if __name__ == '__main__': # 创建generated文件夹 os.makedirs('./data/generated', exist_ok=True) generate_qa(interval=storage_interval)