# Copyright (c) OpenMMLab. All rights reserved. from datasets import load_dataset from mmengine.dataset import DefaultSampler from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR from torch.optim import AdamW from transformers import AutoModelForCausalLM, AutoTokenizer from xtuner.dataset import process_hf_dataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook, VarlenAttnArgsToMessageHubHook) from xtuner.engine.runner import TrainLoop from xtuner.model import SupervisedFinetune from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE from mmengine.visualization import Visualizer,WandbVisBackend, TensorboardVisBackend ####################################################################### # PART 1 Settings # ####################################################################### # Model pretrained_model_name_or_path = '/root/model/jayhust/internlm2-chat-1_8b' use_varlen_attn = False # Data data_path = './merge.json' prompt_template = PROMPT_TEMPLATE.default max_length = 2048 pack_to_max_length = True # Scheduler & Optimizer batch_size = 16 # per_device accumulative_counts = 4 dataloader_num_workers = 0 max_epochs = 3 optim_type = AdamW lr = 2e-5 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip warmup_ratio = 0.03 # Save save_steps = 100 save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) # Evaluate the generation performance during the training evaluation_freq = 100 SYSTEM = "现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。" evaluation_inputs = [ '我压力很大', '生活没意思', "非常容易羡慕别人啊" ] ####################################################################### # PART 2 Model & Tokenizer # ####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, padding_side='right') model = dict( type=SupervisedFinetune, use_varlen_attn=use_varlen_attn, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True)) ####################################################################### # PART 3 Dataset & Dataloader # ####################################################################### alpaca_en = dict( type=process_hf_dataset, dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)), tokenizer=tokenizer, max_length=max_length, dataset_map_fn=None, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), remove_unused_columns=True, shuffle_before_pack=True, pack_to_max_length=pack_to_max_length, use_varlen_attn=use_varlen_attn) train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, dataset=alpaca_en, sampler=dict(type=DefaultSampler, shuffle=True), collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn)) ####################################################################### # PART 4 Scheduler & Optimizer # ####################################################################### # optimizer optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16') # learning policy # More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 param_scheduler = [ dict( type=LinearLR, start_factor=1e-5, by_epoch=True, begin=0, end=warmup_ratio * max_epochs, convert_to_iter_based=True), dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, begin=warmup_ratio * max_epochs, end=max_epochs, convert_to_iter_based=True) ] # train, val, test setting train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) ####################################################################### # PART 5 Runtime # ####################################################################### # Log the dialogue periodically during the training process, optional custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, system=SYSTEM, prompt_template=prompt_template) ] if use_varlen_attn: custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)] # configure default hooks default_hooks = dict( # record the time of every iteration. timer=dict(type=IterTimerHook), # print log every 10 iterations. logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), # enable the parameter scheduler. param_scheduler=dict(type=ParamSchedulerHook), # save checkpoint per `save_steps`. checkpoint=dict( type=CheckpointHook, by_epoch=False, interval=save_steps, max_keep_ckpts=save_total_limit), # set sampler seed in distributed evrionment. sampler_seed=dict(type=DistSamplerSeedHook), ) # configure environment env_cfg = dict( # whether to enable cudnn benchmark cudnn_benchmark=False, # set multi process parameters mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # set distributed parameters dist_cfg=dict(backend='nccl'), ) # set visualizer visualizer = dict( type=Visualizer, vis_backends=[dict(type=WandbVisBackend)] ) # set log level log_level = 'INFO' # load from which checkpoint load_from = None # whether to resume training from the loaded checkpoint resume = False # Defaults to use random seed and disable `deterministic` randomness = dict(seed=None, deterministic=False) # set log processor log_processor = dict(by_epoch=False)