import gradio as gr
import os
import torch
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
DESCRIPTION = '''
EmoLLM Llama3 心理咨询室 V4.0
[![OpenXLab_Model][OpenXLab_Model-image]][OpenXLab_Model-url]
EmoLLM是一系列能够支持 理解用户-支持用户-帮助用户 心理健康辅导链路的 心理健康大模型 ,欢迎大家star~⭐⭐
https://github.com/SmartFlowAI/EmoLLM
[OpenXLab_Model-image]: https://cdn-static.openxlab.org.cn/header/openxlab_models.svg
[OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/chg0901/EmoLLM-Llama3-8B-Instruct3.0
'''
LICENSE = """
Built with Meta Llama 3 >
"""
PLACEHOLDER = """
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
# download internlm2 to the base_path directory using git tool
base_path = './EmoLLM-Llama3-8B-Instruct3.0'
os.system(f'git clone https://code.openxlab.org.cn/chg0901/EmoLLM-Llama3-8B-Instruct3.0.git {base_path}')
os.system(f'cd {base_path} && git lfs pull')
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(base_path,trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(base_path,trust_remote_code=True, device_map="auto", torch_dtype=torch.float16).eval() # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int,
top_p: float
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p = top_p,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='EmoLLM Chat')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=4096,
label="Max new tokens",
render=False ),
gr.Slider(minimum=0.0,
maximum=1,
step=0.01,
value=0.8,
label="Top P",
render=False ),
# gr.Slider(minimum=128,
# maximum=4096,
# step=1,
# value=512,
# label="Max new tokens",
# render=False ),
],
examples=[
['请介绍你自己。'],
['我觉得我在学校的学习压力好大啊,虽然我真的很喜欢我的专业,但最近总是担心自己无法达到自己的期望,这让我有点焦虑。'],
['我最近总觉得自己在感情上陷入了困境,我喜欢上了我的朋友,但又害怕表达出来会破坏我们现在的关系...'],
['我感觉自己像是被困在一个无尽的循环中。每天醒来都感到身体沉重,对日常活动提不起兴趣,工作、锻炼甚至是我曾经喜欢的事物都让我觉得厌倦'],
['最近工作压力特别大,还有一些家庭矛盾']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()