import copy import os import warnings from dataclasses import asdict, dataclass from typing import Callable, List, Optional import streamlit as st import torch from torch import nn from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList from transformers.utils import logging from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip warnings.filterwarnings("ignore") logger = logging.get_logger(__name__) @dataclass class GenerationConfig: # this config is used for chat to provide more diversity max_length: int = 32768 top_p: float = 0.8 temperature: float = 0.8 do_sample: bool = True repetition_penalty: float = 1.005 @torch.inference_mode() def generate_interactive( model, tokenizer, prompt, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, additional_eos_token_id: Optional[int] = None, **kwargs, ): inputs = tokenizer([prompt], padding=True, return_tensors="pt") input_length = len(inputs["input_ids"][0]) for k, v in inputs.items(): inputs[k] = v.cuda() input_ids = inputs["input_ids"] batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] # noqa: F841 # pylint: disable=W0612 if generation_config is None: generation_config = model.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612 generation_config.bos_token_id, generation_config.eos_token_id, ) if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] if additional_eos_token_id is not None: eos_token_id.append(additional_eos_token_id) has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None: warnings.warn( f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" " recommend using `max_new_tokens` to control the maximum length of the generation.", UserWarning, ) elif generation_config.max_new_tokens is not None: generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if not has_default_max_length: logger.warn( # pylint: disable=W4902 f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", UserWarning, ) if input_ids_seq_length >= generation_config.max_length: input_ids_string = "input_ids" logger.warning( f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() logits_processor = model._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, logits_processor=logits_processor, ) stopping_criteria = model._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) logits_warper = model._get_logits_warper(generation_config) unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) scores = None while True: model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs) # forward pass to get next token outputs = model( **model_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, ) next_token_logits = outputs.logits[:, -1, :] # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits) next_token_scores = logits_warper(input_ids, next_token_scores) # sample probs = nn.functional.softmax(next_token_scores, dim=-1) if generation_config.do_sample: next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(probs, dim=-1) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) model_kwargs = model._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False) unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long()) output_token_ids = input_ids[0].cpu().tolist() output_token_ids = output_token_ids[input_length:] for each_eos_token_id in eos_token_id: if output_token_ids[-1] == each_eos_token_id: output_token_ids = output_token_ids[:-1] response = tokenizer.decode(output_token_ids) yield response # stop when each sentence is finished, or if we exceed the maximum length if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): break def on_btn_click(): del st.session_state.messages @st.cache_resource def load_model(): model_name = "./EmoLLM-Llama3-8B-Instruct2.0" print(model_name) print('pip install modelscope websockets') os.system(f'pip install modelscope websockets==11.0.3') from modelscope import snapshot_download #模型下载 model_name = snapshot_download('chg0901/EmoLLM-Llama3-8B-Instruct2.0',cache_dir=model_name) print(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True, torch_dtype=torch.float16).eval() # model.eval() tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token return model, tokenizer def prepare_generation_config(): with st.sidebar: # 使用 Streamlit 的 markdown 函数添加 Markdown 文本 st.image('assets/EmoLLM_logo_L.png', width=1, caption='EmoLLM Logo', use_column_width=True) st.markdown("[访问 **EmoLLM** 官方repo: **SmartFlowAI/EmoLLM**](https://github.com/SmartFlowAI/EmoLLM)") max_length = st.slider("Max Length", min_value=8, max_value=32768, value=32768) top_p = st.slider("Top P", 0.0, 1.0, 0.8, step=0.01) temperature = st.slider("Temperature", 0.0, 1.0, 0.7, step=0.01) st.button("Clear Chat History", on_click=on_btn_click) generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature) return generation_config user_prompt = '<|start_header_id|>user<|end_header_id|>\n\n{user}<|eot_id|>' robot_prompt = '<|start_header_id|>assistant<|end_header_id|>\n\n{robot}<|eot_id|>' cur_query_prompt = '<|start_header_id|>user<|end_header_id|>\n\n{user}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n' def combine_history(prompt): messages = st.session_state.messages meta_instruction = ( "你是心理健康助手EmoLLM, 由EmoLLM团队打造, 是一个研究过无数具有心理健康问题的病人与心理健康医生对话的心理专家, 在心理方面拥有广博的知识储备和丰富的研究咨询经验。你旨在通过专业心理咨询, 协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术, 一步步帮助来访者解决心理问题。\n\n" ) total_prompt =f"<|start_header_id|>system<|end_header_id|>\n\n{meta_instruction}<|eot_id|>\n\n" for message in messages: cur_content = message["content"] if message["role"] == "user": cur_prompt = user_prompt.format(user=cur_content) elif message["role"] == "robot": cur_prompt = robot_prompt.format(robot=cur_content) else: raise RuntimeError total_prompt += cur_prompt total_prompt = total_prompt + cur_query_prompt.format(user=prompt) return total_prompt def main(): torch.cuda.empty_cache() print("load model begin.") model, tokenizer = load_model() print("load model end.") user_avator = "assets/user.png" robot_avator = "assets/EmoLLM.png" st.title("EmoLLM Llama3心理咨询室V2.0") generation_config = prepare_generation_config() # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"], avatar=message.get("avatar")): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("我在这里,准备好倾听你的心声了。"): # Display user message in chat message container with st.chat_message("user", avatar=user_avator): st.markdown(prompt) real_prompt = combine_history(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt, "avatar": user_avator}) with st.chat_message("robot", avatar=robot_avator): message_placeholder = st.empty() for cur_response in generate_interactive( model=model, tokenizer=tokenizer, prompt=real_prompt, additional_eos_token_id=128009, **asdict(generation_config), ): # Display robot response in chat message container message_placeholder.markdown(cur_response + "▌") message_placeholder.markdown(cur_response) # pylint: disable=undefined-loop-variable # Add robot response to chat history st.session_state.messages.append( { "role": "robot", "content": cur_response, # pylint: disable=undefined-loop-variable "avatar": robot_avator, } ) torch.cuda.empty_cache() if __name__ == "__main__": main()