"""
This script refers to the dialogue example of streamlit, the interactive generation code of chatglm2 and transformers.
We mainly modified part of the code logic to adapt to the generation of our model.
Please refer to these links below for more information:
    1. streamlit chat example: https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
    2. chatglm2: https://github.com/THUDM/ChatGLM2-6B
    3. transformers: https://github.com/huggingface/transformers
Please run with the command `streamlit run path/to/web_demo.py --server.address=0.0.0.0 --server.port 7860`.
Using `python path/to/web_demo.py` may cause unknown problems.
"""
import copy
import os
import warnings
from dataclasses import asdict, dataclass
from rag.src.pipeline import EmoLLMRAG
from typing import Callable, List, Optional

import streamlit as st
import torch
from torch import nn
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
from transformers.utils import logging

from transformers import AutoTokenizer, AutoModelForCausalLM  # isort: skip
from openxlab.model import download

logger = logging.get_logger(__name__)

if not os.path.isdir("model"):
    print("[ERROR] not find model dir")
    exit(0)

@dataclass
class GenerationConfig:
    # this config is used for chat to provide more diversity
    max_length: int = 32768
    top_p: float = 0.8
    temperature: float = 0.8
    do_sample: bool = True
    repetition_penalty: float = 1.005


@torch.inference_mode()
def generate_interactive(
    model,
    tokenizer,
    prompt,
    generation_config: Optional[GenerationConfig] = None,
    logits_processor: Optional[LogitsProcessorList] = None,
    stopping_criteria: Optional[StoppingCriteriaList] = None,
    prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
    additional_eos_token_id: Optional[int] = None,
    **kwargs,
):
    inputs = tokenizer([prompt], padding=True, return_tensors="pt")
    input_length = len(inputs["input_ids"][0])
    for k, v in inputs.items():
        inputs[k] = v.cuda()
    input_ids = inputs["input_ids"]
    batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]  # noqa: F841  # pylint: disable=W0612
    if generation_config is None:
        generation_config = model.generation_config
    generation_config = copy.deepcopy(generation_config)
    model_kwargs = generation_config.update(**kwargs)
    bos_token_id, eos_token_id = (  # noqa: F841  # pylint: disable=W0612
        generation_config.bos_token_id,
        generation_config.eos_token_id,
    )
    if isinstance(eos_token_id, int):
        eos_token_id = [eos_token_id]
    if additional_eos_token_id is not None:
        eos_token_id.append(additional_eos_token_id)
    has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
    if has_default_max_length and generation_config.max_new_tokens is None:
        warnings.warn(
            f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
            "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
            " recommend using `max_new_tokens` to control the maximum length of the generation.",
            UserWarning,
        )
    elif generation_config.max_new_tokens is not None:
        generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
        if not has_default_max_length:
            logger.warn(  # pylint: disable=W4902
                f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
                f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
                "Please refer to the documentation for more information. "
                "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
                UserWarning,
            )

    if input_ids_seq_length >= generation_config.max_length:
        input_ids_string = "input_ids"
        logger.warning(
            f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
            f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
            " increasing `max_new_tokens`."
        )

    # 2. Set generation parameters if not already defined
    logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
    stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

    logits_processor = model._get_logits_processor(
        generation_config=generation_config,
        input_ids_seq_length=input_ids_seq_length,
        encoder_input_ids=input_ids,
        prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
        logits_processor=logits_processor,
    )

    stopping_criteria = model._get_stopping_criteria(
        generation_config=generation_config, stopping_criteria=stopping_criteria
    )
    logits_warper = model._get_logits_warper(generation_config)

    unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
    scores = None
    while True:
        model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
        # forward pass to get next token
        outputs = model(
            **model_inputs,
            return_dict=True,
            output_attentions=False,
            output_hidden_states=False,
        )

        next_token_logits = outputs.logits[:, -1, :]

        # pre-process distribution
        next_token_scores = logits_processor(input_ids, next_token_logits)
        next_token_scores = logits_warper(input_ids, next_token_scores)

        # sample
        probs = nn.functional.softmax(next_token_scores, dim=-1)
        if generation_config.do_sample:
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
        else:
            next_tokens = torch.argmax(probs, dim=-1)

        # update generated ids, model inputs, and length for next step
        input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
        model_kwargs = model._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False)
        unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long())

        output_token_ids = input_ids[0].cpu().tolist()
        output_token_ids = output_token_ids[input_length:]
        for each_eos_token_id in eos_token_id:
            if output_token_ids[-1] == each_eos_token_id:
                output_token_ids = output_token_ids[:-1]
        response = tokenizer.decode(output_token_ids)

        yield response
        # stop when each sentence is finished, or if we exceed the maximum length
        if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
            break


def on_btn_click():
    del st.session_state.messages


@st.cache_resource
def load_model():
    model = (
        AutoModelForCausalLM.from_pretrained("model", trust_remote_code=True)
        .to(torch.bfloat16)
        .cuda()
    )
    tokenizer = AutoTokenizer.from_pretrained("model", trust_remote_code=True)
    return model, tokenizer


def prepare_generation_config():
    with st.sidebar:
        max_length = st.slider("Max Length", min_value=8, max_value=32768, value=32768)
        top_p = st.slider("Top P", 0.0, 1.0, 0.8, step=0.01)
        temperature = st.slider("Temperature", 0.0, 1.0, 0.7, step=0.01)
        st.button("Clear Chat History", on_click=on_btn_click)

    generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)

    return generation_config


user_prompt = "<|im_start|>user\n{user}<|im_end|>\n"
robot_prompt = "<|im_start|>assistant\n{robot}<|im_end|>\n"
cur_query_prompt = "<|im_start|>user\n{user}<|im_end|>\n<|im_start|>assistant\n"


def combine_history(prompt, retrieval_content=''):
    messages = st.session_state.messages
    prompt = f"你需要根据以下从书本中检索到的专业知识:`{retrieval_content}`。从一个心理专家的专业角度来回答后续提问:{prompt}"
    meta_instruction = (
        "你是一个由aJupyter、Farewell、jujimeizuo、Smiling&Weeping研发(排名按字母顺序排序,不分先后)、散步提供技术支持、上海人工智能实验室提供支持开发的心理健康大模型。现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
    )
    total_prompt = f"<s><|im_start|>system\n{meta_instruction}<|im_end|>\n"
    for message in messages:
        cur_content = message["content"]
        if message["role"] == "user":
            cur_prompt = user_prompt.format(user=cur_content)
        elif message["role"] == "robot":
            cur_prompt = robot_prompt.format(robot=cur_content)
        else:
            raise RuntimeError
        total_prompt += cur_prompt
    total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
    return total_prompt


def main():
    # torch.cuda.empty_cache()
    print("load model begin.")
    model, tokenizer = load_model()
    rag_obj = EmoLLMRAG(model)
    print("load model end.")

    user_avator = "assets/user.png"
    robot_avator = "assets/robot.jpeg"

    st.title("EmoLLM")

    generation_config = prepare_generation_config()

    # Initialize chat history
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # Display chat messages from history on app rerun
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message.get("avatar")):
            st.markdown(message["content"])

    # Accept user input
    if prompt := st.chat_input("What is up?"):
        # Display user message in chat message container
        retrieval_content = rag_obj.get_retrieval_content(prompt)
        with st.chat_message("user", avatar=user_avator):
            st.markdown(prompt)
            #st.markdown(retrieval_content)

        real_prompt = combine_history(prompt, retrieval_content)
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": user_avator})

        with st.chat_message("robot", avatar=robot_avator):
            message_placeholder = st.empty()
            for cur_response in generate_interactive(
                model=model,
                tokenizer=tokenizer,
                prompt=real_prompt,
                additional_eos_token_id=92542,
                **asdict(generation_config),
            ):
                # Display robot response in chat message container
                message_placeholder.markdown(cur_response + "▌")
            message_placeholder.markdown(cur_response)  # pylint: disable=undefined-loop-variable
        # Add robot response to chat history
        st.session_state.messages.append(
            {
                "role": "robot",
                "content": cur_response,  # pylint: disable=undefined-loop-variable
                "avatar": robot_avator,
            }
        )
        torch.cuda.empty_cache()


if __name__ == "__main__":
    main()