import gradio as gr import os import torch from transformers import GemmaTokenizer, AutoModelForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread DESCRIPTION = '''

EmoLLM Llama3 心理咨询室 V4.0

Logo

[![OpenXLab_Model][OpenXLab_Model-image]][OpenXLab_Model-url]

EmoLLM是一系列能够支持 理解用户-支持用户-帮助用户 心理健康辅导链路的 心理健康大模型 ,欢迎大家star~⭐⭐

https://github.com/SmartFlowAI/EmoLLM

[OpenXLab_Model-image]: https://cdn-static.openxlab.org.cn/header/openxlab_models.svg [OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/chg0901/EmoLLM-Llama3-8B-Instruct3.0 ''' LICENSE = """

Built with Meta Llama 3 """ PLACEHOLDER = """

""" css = """ h1 { text-align: center; display: block; } """ # download internlm2 to the base_path directory using git tool base_path = './EmoLLM-Llama3-8B-Instruct3.0' os.system(f'git clone https://code.openxlab.org.cn/chg0901/EmoLLM-Llama3-8B-Instruct3.0.git {base_path}') os.system(f'cd {base_path} && git lfs pull') # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(base_path,trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(base_path,trust_remote_code=True, device_map="auto", torch_dtype=torch.float16).eval() # to("cuda:0") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float ) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p = top_p, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio block chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='EmoLLM Chat') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False ), gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.8, label="Top P", render=False ), # gr.Slider(minimum=128, # maximum=4096, # step=1, # value=512, # label="Max new tokens", # render=False ), ], examples=[ ['请介绍你自己。'], ['我觉得我在学校的学习压力好大啊,虽然我真的很喜欢我的专业,但最近总是担心自己无法达到自己的期望,这让我有点焦虑。'], ['我最近总觉得自己在感情上陷入了困境,我喜欢上了我的朋友,但又害怕表达出来会破坏我们现在的关系...'], ['我感觉自己像是被困在一个无尽的循环中。每天醒来都感到身体沉重,对日常活动提不起兴趣,工作、锻炼甚至是我曾经喜欢的事物都让我觉得厌倦'], ['最近工作压力特别大,还有一些家庭矛盾'] ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()