# -*- coding: utf-8 -*- # @Time : 2024/10/23 23:16 # @Author : 黄子寒 # @Email : 1064071566@qq.com # @File : topic_model.py # @Project : EmoLLM import json import gensim from gensim import corpora from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from collections import defaultdict # 加载问答对数据 def load_qa_data(file_path): qa_pairs = [] with open(file_path, 'r', encoding='utf-8') as f: for line in f: qa_pairs.append(json.loads(line.strip())) return qa_pairs # 文本预处理 def preprocess_text(text): stop_words = set(stopwords.words('chinese')) tokens = word_tokenize(text.lower()) tokens = [word for word in tokens if word.isalnum() and word not in stop_words] return tokens # 生成LDA主题模型 def build_lda_model(qa_pairs, num_topics=5): # 处理所有问题文本 questions = [qa['input'] for qa in qa_pairs] processed_questions = [preprocess_text(question) for question in questions] # 创建字典和词袋模型 dictionary = corpora.Dictionary(processed_questions) corpus = [dictionary.doc2bow(text) for text in processed_questions] # 训练LDA模型 lda_model = gensim.models.ldamodel.LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15) return lda_model, dictionary, corpus # 打印每个主题的关键词 def print_topics(lda_model, num_words=10): for idx, topic in lda_model.print_topics(num_words=num_words): print(f"主题 {idx}: {topic}") if __name__ == '__main__': qa_file = "output/train_optimized_multiple.jsonl" # 问答对文件 # 加载问答对 qa_pairs = load_qa_data(qa_file) # 构建LDA主题模型 lda_model, dictionary, corpus = build_lda_model(qa_pairs, num_topics=5) # 打印主题及其关键词 print_topics(lda_model)