commit
f156a9c42c
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,4 +1,5 @@
|
||||
ESConv.json
|
||||
.DS_Store
|
||||
__pycache__/
|
||||
tmp/
|
||||
tmp/
|
||||
data/zhipuai/
|
@ -1,5 +1,8 @@
|
||||
# EmoLLM
|
||||
|
||||
|
||||
## 🌟 Contributors
|
||||
|
||||
[![EmoLLM contributors](https://contrib.rocks/image?repo=aJupyter/EmoLLM&max=2000)](https://github.com/aJupyter/EmoLLM/graphs/contributors)
|
||||
|
||||
|
||||
|
@ -3,38 +3,38 @@ import os
|
||||
|
||||
|
||||
def save_merge_json(data_lis, file_path):
|
||||
import json
|
||||
|
||||
with open(file_path, 'wt', encoding='utf-8') as file:
|
||||
json.dump(data_lis, file, ensure_ascii=False)
|
||||
json.dump(data_lis, file, indent=4, ensure_ascii=False)
|
||||
|
||||
|
||||
def get_all_file_paths(folder_path):
|
||||
# 确保传入的是一个目录
|
||||
if not os.path.isdir(folder_path):
|
||||
raise ValueError(f"{folder_path} is not a valid directory")
|
||||
|
||||
# 获取文件夹下所有文件的路径
|
||||
file_paths = [os.path.join(folder_path, file) for file in os.listdir(
|
||||
folder_path) if os.path.isfile(os.path.join(folder_path, file))]
|
||||
return file_paths
|
||||
files = os.listdir(folder_path)
|
||||
path = []
|
||||
for file in files:
|
||||
file_path = os.path.join(folder_path, file)
|
||||
if os.path.isdir(file_path):
|
||||
path.extend(get_all_file_paths(file_path))
|
||||
else:
|
||||
path.append(file_path)
|
||||
return path
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
conversion_lis = []
|
||||
folder_path = '' # input
|
||||
merge_path = '' # input
|
||||
paths = get_all_file_paths(folder_path=folder_path)
|
||||
|
||||
for path in get_all_file_paths('res/'):
|
||||
for path in paths:
|
||||
print(path)
|
||||
|
||||
with open(path, 'rt', encoding='utf-8') as file:
|
||||
for line in file:
|
||||
with open(path, 'rt', encoding='utf-8') as lines:
|
||||
for line in lines:
|
||||
# 移除行尾的换行符
|
||||
line = line.rstrip('\n')
|
||||
line.rstrip('\n')
|
||||
# 解析JSON
|
||||
try:
|
||||
data = json.loads(line)
|
||||
conversion_lis.append(data)
|
||||
except json.JSONDecodeError as e:
|
||||
print(f"Error decoding JSON: {e}")
|
||||
|
||||
save_merge_json(data_lis=conversion_lis, file_path='merge.json')
|
||||
save_merge_json(data_lis=conversion_lis, file_path=merge_path)
|
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import random
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
from dotenv import load_dotenv
|
||||
@ -22,10 +23,12 @@ def zhipu_api(data, emo):
|
||||
医生:医生的安抚和建议
|
||||
'''
|
||||
|
||||
top_p = round(random.uniform(0.1, 0.9), 2)
|
||||
messages = getText('user', prompt)
|
||||
response = client.chat.completions.create(
|
||||
model='glm-4',
|
||||
messages=messages,
|
||||
top_p=top_p,
|
||||
)
|
||||
|
||||
return response.choices[0].message.content
|
||||
@ -47,6 +50,8 @@ def convert(conversation):
|
||||
|
||||
|
||||
def save_jsonl(data_lis, file_path):
|
||||
if not os.path.exists(os.path.dirname(file_path)):
|
||||
os.makedirs(os.path.dirname(file_path))
|
||||
with open(file_path, 'w', encoding='utf-8') as f:
|
||||
for item in data_lis:
|
||||
f.write(json.dumps(item, ensure_ascii=False) + '\n')
|
||||
@ -67,7 +72,7 @@ if __name__ == '__main__':
|
||||
"渴望",
|
||||
"厌恶",
|
||||
"同情",
|
||||
"痛苦"
|
||||
"痛苦",
|
||||
"着迷",
|
||||
"嫉妒",
|
||||
"兴奋",
|
||||
@ -80,7 +85,6 @@ if __name__ == '__main__':
|
||||
"悲伤",
|
||||
"满意",
|
||||
"性欲",
|
||||
"同情",
|
||||
"满足"
|
||||
]
|
||||
areas_of_life = [
|
||||
@ -103,22 +107,18 @@ if __name__ == '__main__':
|
||||
]
|
||||
|
||||
conversation_lis = []
|
||||
idx = 0
|
||||
for area in areas_of_life:
|
||||
j = 0
|
||||
for idx in tqdm(range(len(emotions_lis)), desc=f'data:{area}, emo:{emotions_lis[j]}'):
|
||||
emo = emotions_lis[j]
|
||||
res = zhipu_api(area, emo)
|
||||
print(res)
|
||||
if res == 'null':
|
||||
print(area, emo, 'error')
|
||||
for emo in emotions_lis:
|
||||
for area in areas_of_life:
|
||||
if os.path.exists(f'./zhipuai/{area}/{emo}.jsonl'):
|
||||
print(f'./zhipuai/{area}/{emo}.jsonl exists')
|
||||
continue
|
||||
conversation_lis.append(convert(res))
|
||||
if idx % 2 == 1:
|
||||
save_jsonl(conversation_lis, f'./zhipuai_{idx}.jsonl')
|
||||
conversation_lis = []
|
||||
idx += 1
|
||||
j += 1
|
||||
if len(conversation_lis) > 0:
|
||||
save_jsonl(conversation_lis, f'./zhipuai.jsonl')
|
||||
conversation_lis = []
|
||||
for i in tqdm(range(5), desc='{emo}, {area}'.format(emo=emo, area=area)):
|
||||
res = zhipu_api(area, emo)
|
||||
print(res)
|
||||
if res == 'null':
|
||||
print(area, emo, 'error')
|
||||
continue
|
||||
conversation_lis.append(convert(res))
|
||||
save_jsonl(conversation_lis, f'./zhipuai/{area}/{emo}.jsonl')
|
||||
print(f'generate ./zhipuai/{area}/{emo}.jsonl')
|
||||
conversation_lis = []
|
||||
|
194
finetune/ft_config.py
Normal file
194
finetune/ft_config.py
Normal file
@ -0,0 +1,194 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from mmengine.dataset import DefaultSampler
|
||||
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
||||
LoggerHook, ParamSchedulerHook)
|
||||
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
||||
from peft import LoraConfig
|
||||
from torch.optim import AdamW
|
||||
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||
BitsAndBytesConfig)
|
||||
|
||||
from xtuner.dataset import process_hf_dataset
|
||||
from xtuner.dataset.collate_fns import default_collate_fn
|
||||
from xtuner.dataset.map_fns import template_map_fn_factory
|
||||
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
|
||||
from xtuner.model import SupervisedFinetune
|
||||
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
||||
|
||||
#######################################################################
|
||||
# PART 1 Settings #
|
||||
#######################################################################
|
||||
# Model
|
||||
pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b'
|
||||
|
||||
|
||||
# Data
|
||||
data_path = 'merge.json'
|
||||
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
||||
max_length = 2048
|
||||
pack_to_max_length = True
|
||||
|
||||
# Scheduler & Optimizer
|
||||
batch_size = 8 # per_device
|
||||
accumulative_counts = 2
|
||||
dataloader_num_workers = 0
|
||||
max_epochs = 3
|
||||
optim_type = AdamW
|
||||
lr = 2e-4
|
||||
betas = (0.9, 0.999)
|
||||
weight_decay = 0
|
||||
max_norm = 1 # grad clip
|
||||
warmup_ratio = 0.03
|
||||
|
||||
# Evaluate the generation performance during the training
|
||||
evaluation_freq = 500
|
||||
SYSTEM = "现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
|
||||
evaluation_inputs = [
|
||||
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
|
||||
]
|
||||
|
||||
#######################################################################
|
||||
# PART 2 Model & Tokenizer #
|
||||
#######################################################################
|
||||
tokenizer = dict(
|
||||
type=AutoTokenizer.from_pretrained,
|
||||
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||
trust_remote_code=True,
|
||||
padding_side='right')
|
||||
|
||||
model = dict(
|
||||
type=SupervisedFinetune,
|
||||
llm=dict(
|
||||
type=AutoModelForCausalLM.from_pretrained,
|
||||
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||
trust_remote_code=True,
|
||||
torch_dtype=torch.float16,
|
||||
quantization_config=dict(
|
||||
type=BitsAndBytesConfig,
|
||||
load_in_4bit=True,
|
||||
load_in_8bit=False,
|
||||
llm_int8_threshold=6.0,
|
||||
llm_int8_has_fp16_weight=False,
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type='nf4')),
|
||||
lora=dict(
|
||||
type=LoraConfig,
|
||||
r=64,
|
||||
lora_alpha=16,
|
||||
lora_dropout=0.1,
|
||||
bias='none',
|
||||
task_type='CAUSAL_LM'))
|
||||
|
||||
#######################################################################
|
||||
# PART 3 Dataset & Dataloader #
|
||||
#######################################################################
|
||||
alpaca_en = dict(
|
||||
type=process_hf_dataset,
|
||||
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
|
||||
tokenizer=tokenizer,
|
||||
max_length=max_length,
|
||||
dataset_map_fn=None,
|
||||
template_map_fn=dict(
|
||||
type=template_map_fn_factory, template=prompt_template),
|
||||
remove_unused_columns=True,
|
||||
shuffle_before_pack=True,
|
||||
pack_to_max_length=pack_to_max_length)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=batch_size,
|
||||
num_workers=dataloader_num_workers,
|
||||
dataset=alpaca_en,
|
||||
sampler=dict(type=DefaultSampler, shuffle=True),
|
||||
collate_fn=dict(type=default_collate_fn))
|
||||
|
||||
#######################################################################
|
||||
# PART 4 Scheduler & Optimizer #
|
||||
#######################################################################
|
||||
# optimizer
|
||||
optim_wrapper = dict(
|
||||
type=AmpOptimWrapper,
|
||||
optimizer=dict(
|
||||
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
||||
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
||||
accumulative_counts=accumulative_counts,
|
||||
loss_scale='dynamic',
|
||||
dtype='float16')
|
||||
|
||||
# learning policy
|
||||
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type=LinearLR,
|
||||
start_factor=1e-5,
|
||||
by_epoch=True,
|
||||
begin=0,
|
||||
end=warmup_ratio * max_epochs,
|
||||
convert_to_iter_based=True),
|
||||
dict(
|
||||
type=CosineAnnealingLR,
|
||||
eta_min=0.0,
|
||||
by_epoch=True,
|
||||
begin=warmup_ratio * max_epochs,
|
||||
T_max=max_epochs,
|
||||
convert_to_iter_based=True)
|
||||
]
|
||||
|
||||
# train, val, test setting
|
||||
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
|
||||
|
||||
#######################################################################
|
||||
# PART 5 Runtime #
|
||||
#######################################################################
|
||||
# Log the dialogue periodically during the training process, optional
|
||||
custom_hooks = [
|
||||
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
||||
dict(
|
||||
type=EvaluateChatHook,
|
||||
tokenizer=tokenizer,
|
||||
every_n_iters=evaluation_freq,
|
||||
evaluation_inputs=evaluation_inputs,
|
||||
system=SYSTEM,
|
||||
prompt_template=prompt_template)
|
||||
]
|
||||
|
||||
# configure default hooks
|
||||
default_hooks = dict(
|
||||
# record the time of every iteration.
|
||||
timer=dict(type=IterTimerHook),
|
||||
# print log every 100 iterations.
|
||||
logger=dict(type=LoggerHook, interval=10),
|
||||
# enable the parameter scheduler.
|
||||
param_scheduler=dict(type=ParamSchedulerHook),
|
||||
# save checkpoint per epoch.
|
||||
checkpoint=dict(type=CheckpointHook, interval=1),
|
||||
# set sampler seed in distributed evrionment.
|
||||
sampler_seed=dict(type=DistSamplerSeedHook),
|
||||
)
|
||||
|
||||
# configure environment
|
||||
env_cfg = dict(
|
||||
# whether to enable cudnn benchmark
|
||||
cudnn_benchmark=False,
|
||||
# set multi process parameters
|
||||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||||
# set distributed parameters
|
||||
dist_cfg=dict(backend='nccl'),
|
||||
)
|
||||
|
||||
# set visualizer
|
||||
visualizer = None
|
||||
|
||||
# set log level
|
||||
log_level = 'INFO'
|
||||
|
||||
# load from which checkpoint
|
||||
load_from = None
|
||||
|
||||
# whether to resume training from the loaded checkpoint
|
||||
resume = False
|
||||
|
||||
# Defaults to use random seed and disable `deterministic`
|
||||
randomness = dict(seed=None, deterministic=False)
|
Loading…
Reference in New Issue
Block a user