update new training config and Tutorial
This commit is contained in:
parent
942429c04f
commit
e94028f019
@ -9,6 +9,27 @@
|
|||||||
- 修改Xtuner模型配置文件
|
- 修改Xtuner模型配置文件
|
||||||
- 在EmoLLM项目上进行基于Xtuner进行QLoRA微调
|
- 在EmoLLM项目上进行基于Xtuner进行QLoRA微调
|
||||||
|
|
||||||
|
## 更新
|
||||||
|
|
||||||
|
已经上传了最新的训练配置文件, 进行了些许改动, 训练数据中添加了85条自我认知数据和240条弱智吧数据.
|
||||||
|
|
||||||
|
### 更新的文件
|
||||||
|
|
||||||
|
- 配置文件[llama3_8b_instruct_qlora_alpaca_e3_M_ruozhi_scM](./llama3_8b_instruct_qlora_alpaca_e3_M_ruozhi_scM.py)
|
||||||
|
- [弱智吧原始数据**ruozhiba_raw.jsonl**](../datasets/ruozhiba_raw.jsonl)
|
||||||
|
- [弱智吧原始数据的Python处理文件**ruozhiba_raw_data_process.py**](../datasets/ruozhiba_raw_data_process.py)
|
||||||
|
- [ruozhiba_raw_data_process.py处理之后的弱智吧数据**ruozhiba_format_emo.jsonl**](../datasets/processed/ruozhiba_format_emo.jsonl)
|
||||||
|
- [数据集划分工具代码**split_dataset.py**](../datasets/split_dataset.py)
|
||||||
|
- [调用split_dataset.py的示例代码**split_shuffle.py**](../datasets/split_shuffle.py)
|
||||||
|
|
||||||
|
### 更新的有关参考教程
|
||||||
|
|
||||||
|
请参考以下知乎链接进行训练和测评
|
||||||
|
|
||||||
|
- [[Llama3][InternLM2][RuoZhiBa][EmoLLM]**使用弱智吧数据微调Llama3-Instruct-8B模型**](https://zhuanlan.zhihu.com/p/694818596)
|
||||||
|
- [[Llama3][EmoLLM][Minisora]**Meta Llama 3快速上手:用EmoLLM数据基于Xtuner采用QLoRA微调Meta-Llama-3-8B-Instruct模型**【V1】](https://zhuanlan.zhihu.com/p/693454096)
|
||||||
|
- [[Llama3][InternLM2]**OpenCompass 大模型评测Llama3-instruct-8B有关模型**](https://zhuanlan.zhihu.com/p/694922988)
|
||||||
|
|
||||||
## 模型和有关GitHub项目下载
|
## 模型和有关GitHub项目下载
|
||||||
|
|
||||||
### Llama-3-8B-Instruct模型下载
|
### Llama-3-8B-Instruct模型下载
|
||||||
@ -41,7 +62,7 @@ conda create -n llama python=3.10
|
|||||||
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia
|
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia
|
||||||
```
|
```
|
||||||
|
|
||||||
### git clone xtuner-0.1.18.dev0
|
### git clone XTuner-0.1.18
|
||||||
|
|
||||||
```python
|
```python
|
||||||
git clone https://github.com/InternLM/xtuner
|
git clone https://github.com/InternLM/xtuner
|
||||||
@ -68,7 +89,7 @@ llama3_chat=dict(
|
|||||||
3. 在双换行 \n\n 之后,消息的内容随之而来。每条消息的结尾由 <|eot_id|> 令牌标记。
|
3. 在双换行 \n\n 之后,消息的内容随之而来。每条消息的结尾由 <|eot_id|> 令牌标记。
|
||||||
- Ref: [ArtificialZeng/llama3_explained](https://github.com/ArtificialZeng/llama3_explained)
|
- Ref: [ArtificialZeng/llama3_explained](https://github.com/ArtificialZeng/llama3_explained)
|
||||||
|
|
||||||
### 安装xtuner-0.1.18.dev0
|
### 安装XTuner-0.1.18
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# 进入源码目录
|
# 进入源码目录
|
||||||
@ -498,5 +519,4 @@ python cli_Llama3.py
|
|||||||
|
|
||||||
### **知乎原文**
|
### **知乎原文**
|
||||||
|
|
||||||
1. [Llama3][EmoLLM][Minisora]Meta Llama 3快速上手:用EmoLLM数据基于Xtuner采用QLoRA微调Meta-Llama-3-8B-Instruct模型【V0】 - 知乎 https://zhuanlan.zhihu.com/p/693321573
|
1. [Llama3][EmoLLM][Minisora]Meta Llama 3快速上手:用EmoLLM数据基于Xtuner采用QLoRA微调Meta-Llama-3-8B-Instruct模型【V1】 - 知乎 https://zhuanlan.zhihu.com/p/693454096
|
||||||
2. [Llama3][EmoLLM][Minisora]Meta Llama 3快速上手:用EmoLLM数据基于Xtuner采用QLoRA微调Meta-Llama-3-8B-Instruct模型【V1】 - 知乎 https://zhuanlan.zhihu.com/p/693454096
|
|
Loading…
Reference in New Issue
Block a user