增加glm-4-9b-chat微调文档
This commit is contained in:
parent
965bd185e6
commit
dfb17da010
@ -297,7 +297,7 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
|
||||
| [dream00001](https://github.com/dream00001) | 南开大学在读硕士 | | 前后端开发 |
|
||||
| [王几行XING](https://zhihu.com/people/brycewang1898) | 北京大学硕士毕业 | | 清洗数据、LLM微调、前后端开发 |
|
||||
| [思在] | 北京大学硕士毕业(微软美国) | | LLM微调、前后端开发 |
|
||||
|
||||
| [TingWei](https://github.com/wwewwt) | 电子科技大学硕士毕业士 | 微信公众号:AI大模型在手 | 微调 |
|
||||
### 版权说明
|
||||
|
||||
该项目签署了 MIT 授权许可,详情请参阅 [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE)
|
||||
|
@ -299,6 +299,7 @@ This project uses Git for version control. You can see the currently available v
|
||||
| [dream00001](https://github.com/dream00001) | Nankai University, Master's student | | Front-end and back-end development |
|
||||
| [王几行XING](zhihu.com/people/brycewang1898) | Peking University, Master's graduate | | Data Processing, LLM finetuning, Front-end and back-end development |
|
||||
| [思在] | Peking University, Master's graduate (Microsoft) | | LLM finetuning, Front-end and back-end development |
|
||||
| [TingWei](https://github.com/wwewwt) | University Of Electronic Science And Technology Of China,Master's graduate | | LLM finetuning |
|
||||
|
||||
### Copyright Notice
|
||||
|
||||
|
286
doc/GLM-4-9B-chat Lora 微调(llama-factory).md
Normal file
286
doc/GLM-4-9B-chat Lora 微调(llama-factory).md
Normal file
@ -0,0 +1,286 @@
|
||||
# GLM4-9B-chat Lora 微调.
|
||||
|
||||
介绍如何基于 llama-factory 框架,对 glm-4-9b-chat 模型进行 Lora 微调。Lora 是一种高效微调方法,深入了解其原理可参见博客:[知乎|深入浅出 Lora](https://zhuanlan.zhihu.com/p/650197598)。
|
||||
|
||||
## 一、环境准备
|
||||
我们实践了两种平台进行选择
|
||||
* 在[autodl](https://www.autodl.com/)平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择`PyTorch`-->`2.0.0`-->`3.8(ubuntu20.04)`-->`11.8`
|
||||
![autodl](../xtuner_config/images/autodl.png)
|
||||
|
||||
|
||||
* 在 [InternStudio](https://studio.intern-ai.org.cn/) 平台中选择 A100(1/4) 的配置,如下图所示镜像选择 `Cuda11.7-conda`,如下图所示:
|
||||
![internstudio](../xtuner_config/images/internstudio.png)
|
||||
在Terminal中,进行pip换源和安装依赖包
|
||||
|
||||
## 环境配置
|
||||
|
||||
在完成基本环境配置和本地模型部署的情况下,你还需要安装一些第三方库,可以使用以下命令:
|
||||
|
||||
```bash
|
||||
python -m pip install --upgrade pip
|
||||
# 更换 pypi 源加速库的安装
|
||||
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
|
||||
# 安装 LLaMA-Factory
|
||||
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
|
||||
cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
#上面这步操作会完成torch、transformers、datasets等相关依赖包的安装
|
||||
|
||||
```
|
||||
|
||||
|
||||
## 二、模型下载
|
||||
|
||||
使用 `modelscope` 中的`snapshot_download`函数下载模型,第一个参数为模型名称,参数`cache_dir`为模型的下载路径。
|
||||
|
||||
在 `/root/autodl-tmp` 路径下新建 `download.py` 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 `python /root/autodl-tmp/download.py`执行下载,模型大小为 14 GB,下载模型大概需要 10~20 分钟
|
||||
|
||||
```python
|
||||
import torch
|
||||
from modelscope import snapshot_download, AutoModel, AutoTokenizer
|
||||
import os
|
||||
model_dir = snapshot_download('ZhipuAI/glm-4-9b-chat', cache_dir='/root/autodl-tmp', revision='master')
|
||||
```
|
||||
|
||||
## 三、指令集构建 —— Alpaca 格式
|
||||
|
||||
LLaMA-Factory 支持 alpaca 格式和 sharegpt 格式的数据集,本次微调我们使用 alpaca 格式
|
||||
|
||||
### 指令监督微调数据格式说明
|
||||
|
||||
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
|
||||
|
||||
如果指定,`system` 列对应的内容将被作为系统提示词。
|
||||
|
||||
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**。
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"instruction": "人类指令(必填)",
|
||||
"input": "人类输入(选填)",
|
||||
"output": "模型回答(必填)",
|
||||
"system": "系统提示词(选填)",
|
||||
"history": [
|
||||
["第一轮指令(选填)", "第一轮回答(选填)"],
|
||||
["第二轮指令(选填)", "第二轮回答(选填)"]
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
|
||||
### 单轮对话数据的格式转换
|
||||
使用以下程序将[数据集](../datasets/)转换成 alpaca 格式
|
||||
```python
|
||||
import json
|
||||
import re
|
||||
|
||||
# 选择要格式转换的数据集
|
||||
file_name = "single_turn_dataset_1.json"
|
||||
#file_name = "single_turn_dataset_2.json"
|
||||
|
||||
system_prompt = "如果要添加系统提示词,请放在这里"
|
||||
|
||||
with open(f'../{file_name}', 'rt', encoding='utf-8') as file:
|
||||
data = json.load(file)
|
||||
|
||||
converted_data = [{"instruction": item["prompt"],
|
||||
"input": "",
|
||||
"output": item["completion"],
|
||||
"system": system_prompt
|
||||
} for item in data]
|
||||
|
||||
for i in range(len(converted_data)):
|
||||
|
||||
# 数据清洗-去掉特殊符号
|
||||
if "🐳" in converted_data[i]["output"]:
|
||||
converted_data[i]["output"] = converted_data[i]["output"].replace("🐳", "")
|
||||
|
||||
# 数据清洗-去掉“你好,我是红烧肉”,会影响大模型的自我认知
|
||||
if '好,我是' in converted_data[i]["output"]:
|
||||
converted_data[i]["output"] = converted_data[i]["output"].strip()
|
||||
intro_pattern = r"^[^\n]+\n"
|
||||
converted_data[i]["output"] = re.sub(intro_pattern, "", converted_data[i]["output"]).strip()
|
||||
|
||||
with open(f'./processed/{file_name}', 'w', encoding='utf-8') as f:
|
||||
json.dump(converted_data, f, ensure_ascii=False, indent=4)
|
||||
print(f'./processed/{file_name} Done')
|
||||
|
||||
```
|
||||
|
||||
### 多轮对话数据的格式转换
|
||||
使用以下程序将[数据集](../datasets/)转换成 alpaca 格式
|
||||
```python
|
||||
from tqdm import tqdm
|
||||
import json
|
||||
|
||||
# 选择要格式转换的数据集
|
||||
file_name = "data.json"
|
||||
#file_name = "data_pro.json"
|
||||
#file_name = "multi_turn_dataset_1.json"
|
||||
#file_name = "multi_turn_dataset_2.json"
|
||||
#file_name = "aiwei.json"
|
||||
|
||||
system_prompt = "如果要添加系统提示词,请放在这里"
|
||||
|
||||
with open(f'../{file_name}', 'rt', encoding='utf-8') as file:
|
||||
data = json.load(file)
|
||||
|
||||
# 遍历原始数据,进行格式转换
|
||||
|
||||
# 转换后的数据格式
|
||||
converted_data = []
|
||||
for item in tqdm(data):
|
||||
conversation = item['conversation']
|
||||
history = [(c['input'], c['output']) for c in conversation[:-1]]
|
||||
last_item = conversation[-1]
|
||||
converted_data.append({
|
||||
"instruction": last_item['input'],
|
||||
"input": "",
|
||||
"output": last_item['output'],
|
||||
"system": system_prompt,
|
||||
"history": history
|
||||
})
|
||||
# 将转换后的数据转换为JSON格式
|
||||
converted_json = json.dumps(converted_data, ensure_ascii=False, indent=4)
|
||||
|
||||
with open(f'./processed/{file_name}', 'w', encoding='utf-8') as f:
|
||||
json.dump(converted_data, f, ensure_ascii=False, indent=4)
|
||||
```
|
||||
|
||||
|
||||
### 角色扮演数据的格式转换
|
||||
代码同上,根据原数据集是单轮对话还是多轮对话来选择。注意设置各个角色的“system_prompt”。
|
||||
|
||||
|
||||
### 数据集合并
|
||||
为了方便处理(不想在LLaMA-Factory中添加太多的数据集),这里将所有已经处理好的 alpaca 格式的数据集(每一个数据集文件都是一个json字符串)合并成一个文件(一个大的json字符串),合并代码如下:
|
||||
```python
|
||||
import json
|
||||
|
||||
# 初始化一个空列表来存储所有数据
|
||||
merged_data = []
|
||||
file_list = [
|
||||
"single_turn_dataset_1.json",
|
||||
"single_turn_dataset_2.json",
|
||||
"self_cognition_EmoLLM.json",
|
||||
"ruozhiba_raw.json",
|
||||
"data.json",
|
||||
"data_pro.json",
|
||||
"multi_turn_dataset_1.json",
|
||||
"multi_turn_dataset_2.json",
|
||||
"aiwei.json",
|
||||
"tiangou.json",
|
||||
"SoulStar_data.json",
|
||||
"mother_v2.json",
|
||||
"scientist.json"
|
||||
]
|
||||
|
||||
# 遍历所有文件并读取数据
|
||||
for filename in file_list:
|
||||
with open(f"./processed/{filename}", 'r', encoding='utf-8') as file:
|
||||
data = json.load(file)
|
||||
merged_data.extend(data)
|
||||
|
||||
# 将合并后的数据写入新的 JSON 文件
|
||||
with open('emo_glm4_merged_data.json', 'w', encoding='utf-8') as output_file:
|
||||
json.dump(merged_data, output_file, ensure_ascii=False, indent=4)
|
||||
|
||||
print("合并完成,已保存到 emo_glm4_merged_data.json 文件中。")
|
||||
```
|
||||
|
||||
|
||||
### 将数据集配置到LLaMA-Factory 中
|
||||
|
||||
修改 LLaMa-Factory 目录中的 data/dataset_info.json 文件,在其中添加:
|
||||
|
||||
```json
|
||||
"emo_merged": {
|
||||
"file_name": "emo_glm4_merged_data.json文件的绝对路径",
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 四、微调模型
|
||||
在 LLaMA-Factory 目录中新建配置文件 emo_glm4_lora_sft.yaml :
|
||||
```python
|
||||
### model
|
||||
model_name_or_path: glm-4-9b-chat模型地址的绝对路径
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
# dataset 要和 data/dataset_info.json 中添加的信息保持一致
|
||||
dataset: emo_merged
|
||||
template: glm4
|
||||
cutoff_len: 2048
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
# output_dir是模型训练过程中的checkpoint,训练日志等的保存目录
|
||||
output_dir: saves/emo-glm4-epoch10/lora/sft
|
||||
logging_steps: 10
|
||||
#save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_strategy: epoch
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
|
||||
### eval
|
||||
do_eval: false
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
eval_strategy: steps
|
||||
eval_steps: 10
|
||||
```
|
||||
|
||||
执行以下命令开始微调:
|
||||
```bash
|
||||
cd LLaMA-Factory
|
||||
llamafactory-cli train glm4_emo_lora_sft.yaml
|
||||
```
|
||||
|
||||
训练完成后,在 LLaMA-Factory 目录中新建配置文件 emo_glm4_lora_sft_export.yaml:
|
||||
|
||||
```python
|
||||
### model
|
||||
model_name_or_path: glm-4-9b-chat模型地址的绝对路径
|
||||
# 刚才emo_glm4_lora_sft.yaml文件中的 output_dir
|
||||
adapter_name_or_path: saves/emo-glm4-epoch10/lora/sft
|
||||
template: glm4
|
||||
finetuning_type: lora
|
||||
|
||||
### export
|
||||
export_dir: models/EmoLLM-glm-4-9b-chat
|
||||
export_size: 2
|
||||
export_device: cpu
|
||||
export_legacy_format: false
|
||||
```
|
||||
|
||||
## 五、合并模型
|
||||
|
||||
执行以下命令开始合并模型:
|
||||
```bash
|
||||
cd LLaMA-Factory
|
||||
llamafactory-cli export emo_glm4_lora_sft_export.yaml
|
||||
```
|
||||
|
||||
在 models/EmoLLM-glm-4-9b-chat 目录中就可以获得经过Lora微调后的完整模型。
|
||||
|
||||
模型权重已开源:[ModelScope](https://www.modelscope.cn/models/wwewwt/EmoLLM-glm-4-9b-chat/summary)
|
Loading…
Reference in New Issue
Block a user