add full finetune code from internlm2
This commit is contained in:
parent
252adc7eef
commit
df81a99f53
@ -0,0 +1,222 @@
|
|||||||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
|
"""Data format:
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"conversation": [
|
||||||
|
{
|
||||||
|
"system": "",
|
||||||
|
"input": "xxx",
|
||||||
|
"output": "xxx"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"input": "xxx",
|
||||||
|
"output": "xxx"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
...
|
||||||
|
]
|
||||||
|
Please refer to https://github.com/InternLM/xtuner/blob/main/docs/en/user_guides/dataset_format.md for details.
|
||||||
|
""" # noqa: E501
|
||||||
|
from datasets import load_dataset
|
||||||
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
||||||
|
LoggerHook, ParamSchedulerHook)
|
||||||
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
|
||||||
|
from torch.optim import AdamW
|
||||||
|
from torch.utils.data import BatchSampler
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
from xtuner.dataset import process_hf_dataset
|
||||||
|
from xtuner.dataset.collate_fns import default_collate_fn
|
||||||
|
from xtuner.dataset.map_fns import template_map_fn_factory
|
||||||
|
from xtuner.dataset.samplers import InternRepoSampler
|
||||||
|
from xtuner.engine import (DatasetInfoHook, EvaluateChatHook, ThroughputHook,
|
||||||
|
VarlenAttnArgsToMessageHubHook)
|
||||||
|
from xtuner.engine.runner import TrainLoop
|
||||||
|
from xtuner.model import SupervisedFinetune
|
||||||
|
from xtuner.utils import PROMPT_TEMPLATE
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 1 Settings #
|
||||||
|
#######################################################################
|
||||||
|
# Model
|
||||||
|
pretrained_model_name_or_path = 'internlm/internlm2-chat-7b'
|
||||||
|
use_varlen_attn = True
|
||||||
|
|
||||||
|
# Data
|
||||||
|
data_files = ['/path/to/json/file.json']
|
||||||
|
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
||||||
|
max_length = 32768
|
||||||
|
pack_to_max_length = True
|
||||||
|
|
||||||
|
# Scheduler & Optimizer
|
||||||
|
# batch size per device, set to 1 if `use_varlen_attn` = True
|
||||||
|
# To clarify, enlarging the batch size essentially enlarges the `max_length`.
|
||||||
|
# For example, doubling the max length is tantamount to doubling the batch size
|
||||||
|
batch_size = 1
|
||||||
|
accumulative_counts = 1 # 1bs * 1acc * 64gpu = 64 batchsize
|
||||||
|
dataloader_num_workers = 4
|
||||||
|
max_epochs = 1
|
||||||
|
optim_type = AdamW
|
||||||
|
lr = 4e-5
|
||||||
|
betas = (0.9, 0.95)
|
||||||
|
weight_decay = 0.01
|
||||||
|
max_norm = 1 # grad clip
|
||||||
|
warm_up_ratio = 0.025
|
||||||
|
|
||||||
|
# Save
|
||||||
|
save_steps = 500
|
||||||
|
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
||||||
|
|
||||||
|
# Evaluate the generation performance during the training
|
||||||
|
evaluation_freq = 500
|
||||||
|
SYSTEM = ''
|
||||||
|
evaluation_inputs = [
|
||||||
|
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
|
||||||
|
]
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 2 Model & Tokenizer #
|
||||||
|
#######################################################################
|
||||||
|
tokenizer = dict(
|
||||||
|
type=AutoTokenizer.from_pretrained,
|
||||||
|
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
padding_side='right')
|
||||||
|
|
||||||
|
model = dict(
|
||||||
|
type=SupervisedFinetune,
|
||||||
|
use_varlen_attn=use_varlen_attn,
|
||||||
|
llm=dict(
|
||||||
|
type=AutoModelForCausalLM.from_pretrained,
|
||||||
|
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||||
|
trust_remote_code=True))
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 3 Dataset & Dataloader #
|
||||||
|
#######################################################################
|
||||||
|
train_dataset = dict(
|
||||||
|
type=process_hf_dataset,
|
||||||
|
use_varlen_attn=use_varlen_attn,
|
||||||
|
dataset=dict(type=load_dataset, path='json', data_files=data_files),
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
max_length=max_length,
|
||||||
|
dataset_map_fn=None,
|
||||||
|
template_map_fn=dict(
|
||||||
|
type=template_map_fn_factory, template=prompt_template),
|
||||||
|
remove_unused_columns=True,
|
||||||
|
shuffle_before_pack=True,
|
||||||
|
pack_to_max_length=pack_to_max_length)
|
||||||
|
|
||||||
|
train_dataloader = dict(
|
||||||
|
batch_size=batch_size,
|
||||||
|
num_workers=dataloader_num_workers,
|
||||||
|
dataset=train_dataset,
|
||||||
|
sampler=dict(type=InternRepoSampler, shuffle=True, seed=1024),
|
||||||
|
batch_sampler=dict(
|
||||||
|
type=BatchSampler, drop_last=True, batch_size=batch_size),
|
||||||
|
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 4 Scheduler & Optimizer #
|
||||||
|
#######################################################################
|
||||||
|
# optimizer
|
||||||
|
optim_wrapper = dict(
|
||||||
|
type=AmpOptimWrapper,
|
||||||
|
optimizer=dict(
|
||||||
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
||||||
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
||||||
|
accumulative_counts=accumulative_counts,
|
||||||
|
loss_scale='dynamic',
|
||||||
|
)
|
||||||
|
|
||||||
|
# learning policy
|
||||||
|
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
||||||
|
param_scheduler = [
|
||||||
|
dict(
|
||||||
|
type='LinearLR',
|
||||||
|
start_factor=1 / 40,
|
||||||
|
by_epoch=True,
|
||||||
|
begin=0,
|
||||||
|
end=warm_up_ratio * max_epochs,
|
||||||
|
convert_to_iter_based=True),
|
||||||
|
dict(
|
||||||
|
type=CosineAnnealingLR,
|
||||||
|
eta_min=lr * 0.15,
|
||||||
|
by_epoch=True,
|
||||||
|
begin=warm_up_ratio * max_epochs,
|
||||||
|
end=max_epochs,
|
||||||
|
convert_to_iter_based=True)
|
||||||
|
]
|
||||||
|
|
||||||
|
# train, val, test setting
|
||||||
|
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 5 Runtime #
|
||||||
|
#######################################################################
|
||||||
|
# Log the dialogue periodically during the training process, optional
|
||||||
|
custom_hooks = [
|
||||||
|
dict(
|
||||||
|
type=DatasetInfoHook, tokenizer=tokenizer,
|
||||||
|
is_intern_repo_dataset=True),
|
||||||
|
dict(
|
||||||
|
type=EvaluateChatHook,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
every_n_iters=evaluation_freq,
|
||||||
|
evaluation_inputs=evaluation_inputs,
|
||||||
|
system=SYSTEM,
|
||||||
|
prompt_template=prompt_template),
|
||||||
|
dict(type=ThroughputHook)
|
||||||
|
]
|
||||||
|
|
||||||
|
if use_varlen_attn:
|
||||||
|
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
||||||
|
|
||||||
|
# configure default hooks
|
||||||
|
default_hooks = dict(
|
||||||
|
# record the time of every iteration.
|
||||||
|
timer=dict(type=IterTimerHook),
|
||||||
|
# print log every 100 iterations.
|
||||||
|
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=1),
|
||||||
|
# enable the parameter scheduler.
|
||||||
|
param_scheduler=dict(type=ParamSchedulerHook),
|
||||||
|
# save checkpoint per `save_steps`.
|
||||||
|
checkpoint=dict(
|
||||||
|
type=CheckpointHook,
|
||||||
|
by_epoch=False,
|
||||||
|
interval=save_steps,
|
||||||
|
max_keep_ckpts=save_total_limit),
|
||||||
|
# set sampler seed in distributed evrionment.
|
||||||
|
sampler_seed=dict(type=DistSamplerSeedHook),
|
||||||
|
)
|
||||||
|
|
||||||
|
# configure environment
|
||||||
|
env_cfg = dict(
|
||||||
|
# whether to enable cudnn benchmark
|
||||||
|
cudnn_benchmark=False,
|
||||||
|
# set multi process parameters
|
||||||
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||||||
|
# set distributed parameters
|
||||||
|
dist_cfg=dict(backend='nccl'),
|
||||||
|
)
|
||||||
|
|
||||||
|
# set visualizer
|
||||||
|
visualizer = None
|
||||||
|
|
||||||
|
# set log level
|
||||||
|
log_level = 'INFO'
|
||||||
|
|
||||||
|
# load from which checkpoint
|
||||||
|
load_from = None
|
||||||
|
|
||||||
|
# whether to resume training from the loaded checkpoint
|
||||||
|
resume = False
|
||||||
|
|
||||||
|
# Defaults to use random seed and disable `deterministic`
|
||||||
|
randomness = dict(seed=None, deterministic=False)
|
||||||
|
|
||||||
|
log_processor = dict(
|
||||||
|
by_epoch=False,
|
||||||
|
window_size=1,
|
||||||
|
mean_pattern=r'.*(loss|time|data_time|grad_norm|tflops).*')
|
Loading…
Reference in New Issue
Block a user