add Incremental Pre-training Guide
This commit is contained in:
parent
eeec1d3f15
commit
c9791814cf
@ -98,6 +98,7 @@
|
|||||||
</table>
|
</table>
|
||||||
|
|
||||||
### 🎇最近更新
|
### 🎇最近更新
|
||||||
|
- 【2024.5.7】[增量预训练指南](xtuner_config/pt/README.md)
|
||||||
- 【2024.4.20】[LLAMA3微调指南](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md)及基于[LLaMA3_8b_instruct的艾薇](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei)开源
|
- 【2024.4.20】[LLAMA3微调指南](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md)及基于[LLaMA3_8b_instruct的艾薇](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei)开源
|
||||||
- 【2023.4.14】新增[快速开始](docs/quick_start.md)和保姆级教程[BabyEmoLLM](Baby_EmoLLM.ipynb)
|
- 【2023.4.14】新增[快速开始](docs/quick_start.md)和保姆级教程[BabyEmoLLM](Baby_EmoLLM.ipynb)
|
||||||
- 【2024.4.2】在 Huggingface 上传[老母亲心理咨询师](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
- 【2024.4.2】在 Huggingface 上传[老母亲心理咨询师](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
||||||
|
@ -101,6 +101,7 @@ The Model aims to fully understand and promote the mental health of individuals,
|
|||||||
</table>
|
</table>
|
||||||
|
|
||||||
### Recent Updates
|
### Recent Updates
|
||||||
|
- [2024.5.7][Incremental Pre-training Guide](xtuner_config/pt/README.md)
|
||||||
- [2024.4.20] [LLAMA3 fine-tuning guide](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md) and based on [LLaMA3_8b_instruct's aiwei](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei) open source
|
- [2024.4.20] [LLAMA3 fine-tuning guide](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md) and based on [LLaMA3_8b_instruct's aiwei](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei) open source
|
||||||
- [2023.4.14] Added [Quick Start](docs/quick_start_EN.md) and Nanny level tutorial [BabyEmoLLM](Baby_EmoLLM.ipynb)
|
- [2023.4.14] Added [Quick Start](docs/quick_start_EN.md) and Nanny level tutorial [BabyEmoLLM](Baby_EmoLLM.ipynb)
|
||||||
- [2024.4.2] Uploaded at Huggingface [Old Mother Counsellor](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
- [2024.4.2] Uploaded at Huggingface [Old Mother Counsellor](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
||||||
|
36
xtuner_config/pt/README.md
Normal file
36
xtuner_config/pt/README.md
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
# 增量预训练教程
|
||||||
|
|
||||||
|
# 增量预训练简介
|
||||||
|
增量预训练旨在提升模型在特定领域或任务的能力。
|
||||||
|
|
||||||
|
|
||||||
|
# 预训练流程
|
||||||
|
- Step1 处理数据
|
||||||
|
- Step2 配置config(全量、Lora、Qlora)
|
||||||
|
- Step3 启动训练(单卡、多卡、是否使用deepspeed)
|
||||||
|
- Step4 模型合成
|
||||||
|
- Step5 模型测试
|
||||||
|
- Step6 模型上传
|
||||||
|
|
||||||
|
# EmoLLM增量预训练教程
|
||||||
|
基于微调中的数据集[datasets](../../datasets)修改而来
|
||||||
|
|
||||||
|
- Step1 修改`ft2pt.py`中的文件路径
|
||||||
|
这里以[output2.json](../../datasets/processed/output2.json)为例,运行脚本生成[pt.json](../../datasets/pt/pt.json)
|
||||||
|
|
||||||
|
- Step2 [config](./internlm2_chat_1_8b_qlora_e3_pt.py)
|
||||||
|
注意:本config采用了**变长注意力 (Variable Length Attention)**
|
||||||
|
需要安装flash_attn
|
||||||
|
`MAX_JOBS=4 pip install flash-attn --no-build-isolation`
|
||||||
|
|
||||||
|
|
||||||
|
- Step3 训练:
|
||||||
|
```
|
||||||
|
# On a single GPU
|
||||||
|
xtuner train internlm2_chat_1_8b_qlora_e3_pt.py --deepspeed deepspeed_zero2
|
||||||
|
# On multiple GPUs
|
||||||
|
(DIST) NPROC_PER_NODE=${GPU_NUM} xtuner train internlm2_chat_1_8b_qlora_e3_pt.py --deepspeed deepspeed_zero2
|
||||||
|
(SLURM) srun ${SRUN_ARGS} xtuner train internlm2_chat_1_8b_qlora_e3_pt.py --launcher slurm --deepspeed deepspeed_zero2
|
||||||
|
```
|
||||||
|
|
||||||
|
- 其余流程请参考[微调教程](../../xtuner_config/README.md)
|
48
xtuner_config/pt/ft2pt.py
Normal file
48
xtuner_config/pt/ft2pt.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# 将微调的数据格式转为预训练的格式
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
def convert(data_path:str, target_path:str):
|
||||||
|
# 假设原始JSON数据存储在名为'data.json'的文件中
|
||||||
|
filename = data_path
|
||||||
|
|
||||||
|
# 读取文件内容
|
||||||
|
with open(filename, 'rt', encoding='utf-8') as file:
|
||||||
|
original_json = file.read()
|
||||||
|
|
||||||
|
# 将原始JSON字符串解析为Python对象
|
||||||
|
data = json.loads(original_json)
|
||||||
|
|
||||||
|
# 遍历每个对话
|
||||||
|
converted_data = []
|
||||||
|
|
||||||
|
# 遍历原始数据中的每个对话对象
|
||||||
|
for conversation_group in data:
|
||||||
|
# 遍历每个对话
|
||||||
|
for dialog in conversation_group["conversation"]:
|
||||||
|
# 创建一个新的对话对象,用于存储转换后的对话
|
||||||
|
new_conversation_group = {
|
||||||
|
"conversation": []
|
||||||
|
}
|
||||||
|
# 创建一个新的对话,其中输出被替换为"xxx"
|
||||||
|
new_dialog = {
|
||||||
|
"input": '',
|
||||||
|
"output": f'问题:{dialog["input"]}\n答案:{dialog["output"]}',
|
||||||
|
}
|
||||||
|
# 将新的对话添加到新对话对象的列表中
|
||||||
|
new_conversation_group["conversation"].append(new_dialog)
|
||||||
|
|
||||||
|
# 将新对话对象添加到转换后的数据列表中
|
||||||
|
converted_data.append(new_conversation_group)
|
||||||
|
|
||||||
|
|
||||||
|
# 将更新后的数据转换回JSON字符串,并格式化输出
|
||||||
|
updated_json = json.dumps(converted_data, indent=4, ensure_ascii=False)
|
||||||
|
|
||||||
|
|
||||||
|
# 将更新后的JSON数据写入到新的文件中
|
||||||
|
with open(f'{target_path}', 'wt', encoding='utf-8') as file:
|
||||||
|
file.write(updated_json)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
convert(data_path='./output2.json', target_path='pt.json')
|
202
xtuner_config/pt/internlm2_chat_1_8b_qlora_e3_pt.py
Normal file
202
xtuner_config/pt/internlm2_chat_1_8b_qlora_e3_pt.py
Normal file
@ -0,0 +1,202 @@
|
|||||||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
from mmengine.dataset import DefaultSampler
|
||||||
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
||||||
|
LoggerHook, ParamSchedulerHook)
|
||||||
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
||||||
|
from peft import LoraConfig
|
||||||
|
from torch.optim import AdamW
|
||||||
|
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||||
|
BitsAndBytesConfig)
|
||||||
|
|
||||||
|
from xtuner.dataset import process_hf_dataset
|
||||||
|
from xtuner.dataset.collate_fns import default_collate_fn
|
||||||
|
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
||||||
|
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
||||||
|
VarlenAttnArgsToMessageHubHook)
|
||||||
|
from xtuner.engine.runner import TrainLoop
|
||||||
|
from xtuner.model import SupervisedFinetune
|
||||||
|
from xtuner.parallel.sequence import SequenceParallelSampler
|
||||||
|
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 1 Settings #
|
||||||
|
#######################################################################
|
||||||
|
# Model
|
||||||
|
pretrained_model_name_or_path = '/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b'
|
||||||
|
use_varlen_attn = True # True
|
||||||
|
|
||||||
|
# Data
|
||||||
|
data_path = '/root/wxz/work/pt/pt.json'
|
||||||
|
prompt_template = PROMPT_TEMPLATE.internlm2_chat
|
||||||
|
max_length = 2048
|
||||||
|
pack_to_max_length = True
|
||||||
|
|
||||||
|
# parallel
|
||||||
|
sequence_parallel_size = 1
|
||||||
|
|
||||||
|
# Scheduler & Optimizer
|
||||||
|
batch_size = 1 # per_device
|
||||||
|
accumulative_counts = 1
|
||||||
|
accumulative_counts *= sequence_parallel_size
|
||||||
|
dataloader_num_workers = 0
|
||||||
|
max_epochs = 3
|
||||||
|
optim_type = AdamW
|
||||||
|
lr = 2e-4
|
||||||
|
betas = (0.9, 0.999)
|
||||||
|
weight_decay = 0
|
||||||
|
max_norm = 1 # grad clip
|
||||||
|
warmup_ratio = 0.03
|
||||||
|
|
||||||
|
# Save
|
||||||
|
save_steps = 500
|
||||||
|
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
||||||
|
|
||||||
|
# Evaluate the generation performance during the training
|
||||||
|
evaluation_freq = 500
|
||||||
|
SYSTEM = SYSTEM_TEMPLATE.alpaca
|
||||||
|
evaluation_inputs = [
|
||||||
|
'我们经常因为一些小事争吵,他总是忽略我的感受。我感到很孤独,'
|
||||||
|
]
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 2 Model & Tokenizer #
|
||||||
|
#######################################################################
|
||||||
|
tokenizer = dict(
|
||||||
|
type=AutoTokenizer.from_pretrained,
|
||||||
|
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
padding_side='right')
|
||||||
|
|
||||||
|
model = dict(
|
||||||
|
type=SupervisedFinetune,
|
||||||
|
use_varlen_attn=use_varlen_attn,
|
||||||
|
llm=dict(
|
||||||
|
type=AutoModelForCausalLM.from_pretrained,
|
||||||
|
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.float16,),
|
||||||
|
lora=dict(
|
||||||
|
type=LoraConfig,
|
||||||
|
r=64,
|
||||||
|
lora_alpha=16,
|
||||||
|
lora_dropout=0.1,
|
||||||
|
bias='none',
|
||||||
|
task_type='CAUSAL_LM'))
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 3 Dataset & Dataloader #
|
||||||
|
#######################################################################
|
||||||
|
alpaca_en = dict(
|
||||||
|
type=process_hf_dataset,
|
||||||
|
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
max_length=max_length,
|
||||||
|
dataset_map_fn=None,
|
||||||
|
template_map_fn=None,
|
||||||
|
remove_unused_columns=True,
|
||||||
|
shuffle_before_pack=True,
|
||||||
|
pack_to_max_length=pack_to_max_length,
|
||||||
|
use_varlen_attn=use_varlen_attn)
|
||||||
|
|
||||||
|
sampler = SequenceParallelSampler \
|
||||||
|
if sequence_parallel_size > 1 else DefaultSampler
|
||||||
|
train_dataloader = dict(
|
||||||
|
batch_size=batch_size,
|
||||||
|
num_workers=dataloader_num_workers,
|
||||||
|
dataset=alpaca_en,
|
||||||
|
sampler=dict(type=sampler, shuffle=True),
|
||||||
|
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 4 Scheduler & Optimizer #
|
||||||
|
#######################################################################
|
||||||
|
# optimizer
|
||||||
|
optim_wrapper = dict(
|
||||||
|
type=AmpOptimWrapper,
|
||||||
|
optimizer=dict(
|
||||||
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
||||||
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
||||||
|
accumulative_counts=accumulative_counts,
|
||||||
|
loss_scale='dynamic',
|
||||||
|
dtype='float16')
|
||||||
|
|
||||||
|
# learning policy
|
||||||
|
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
||||||
|
param_scheduler = [
|
||||||
|
dict(
|
||||||
|
type=LinearLR,
|
||||||
|
start_factor=1e-5,
|
||||||
|
by_epoch=True,
|
||||||
|
begin=0,
|
||||||
|
end=warmup_ratio * max_epochs,
|
||||||
|
convert_to_iter_based=True),
|
||||||
|
dict(
|
||||||
|
type=CosineAnnealingLR,
|
||||||
|
eta_min=0.0,
|
||||||
|
by_epoch=True,
|
||||||
|
begin=warmup_ratio * max_epochs,
|
||||||
|
end=max_epochs,
|
||||||
|
convert_to_iter_based=True)
|
||||||
|
]
|
||||||
|
|
||||||
|
# train, val, test setting
|
||||||
|
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 5 Runtime #
|
||||||
|
#######################################################################
|
||||||
|
# Log the dialogue periodically during the training process, optional
|
||||||
|
custom_hooks = [
|
||||||
|
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
||||||
|
]
|
||||||
|
|
||||||
|
if use_varlen_attn:
|
||||||
|
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
||||||
|
|
||||||
|
# configure default hooks
|
||||||
|
default_hooks = dict(
|
||||||
|
# record the time of every iteration.
|
||||||
|
timer=dict(type=IterTimerHook),
|
||||||
|
# print log every 10 iterations.
|
||||||
|
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
||||||
|
# enable the parameter scheduler.
|
||||||
|
param_scheduler=dict(type=ParamSchedulerHook),
|
||||||
|
# save checkpoint per `save_steps`.
|
||||||
|
checkpoint=dict(
|
||||||
|
type=CheckpointHook,
|
||||||
|
by_epoch=False,
|
||||||
|
interval=save_steps,
|
||||||
|
max_keep_ckpts=save_total_limit),
|
||||||
|
# set sampler seed in distributed evrionment.
|
||||||
|
sampler_seed=dict(type=DistSamplerSeedHook),
|
||||||
|
)
|
||||||
|
|
||||||
|
# configure environment
|
||||||
|
env_cfg = dict(
|
||||||
|
# whether to enable cudnn benchmark
|
||||||
|
cudnn_benchmark=False,
|
||||||
|
# set multi process parameters
|
||||||
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||||||
|
# set distributed parameters
|
||||||
|
dist_cfg=dict(backend='nccl'),
|
||||||
|
)
|
||||||
|
|
||||||
|
# set visualizer
|
||||||
|
visualizer = None
|
||||||
|
|
||||||
|
# set log level
|
||||||
|
log_level = 'INFO'
|
||||||
|
|
||||||
|
# load from which checkpoint
|
||||||
|
load_from = None
|
||||||
|
|
||||||
|
# whether to resume training from the loaded checkpoint
|
||||||
|
resume = False
|
||||||
|
|
||||||
|
# Defaults to use random seed and disable `deterministic`
|
||||||
|
randomness = dict(seed=None, deterministic=False)
|
||||||
|
|
||||||
|
# set log processor
|
||||||
|
log_processor = dict(by_epoch=False)
|
Loading…
Reference in New Issue
Block a user