diff --git a/README.md b/README.md index ffd9e15..24cbfed 100644 --- a/README.md +++ b/README.md @@ -98,6 +98,7 @@ ### 🎇最近更新 +- 【2024.5.7】[增量预训练指南](xtuner_config/pt/README.md) - 【2024.4.20】[LLAMA3微调指南](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md)及基于[LLaMA3_8b_instruct的艾薇](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei)开源 - 【2023.4.14】新增[快速开始](docs/quick_start.md)和保姆级教程[BabyEmoLLM](Baby_EmoLLM.ipynb) - 【2024.4.2】在 Huggingface 上传[老母亲心理咨询师](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main) diff --git a/README_EN.md b/README_EN.md index 9e6b833..f2875a1 100644 --- a/README_EN.md +++ b/README_EN.md @@ -101,6 +101,7 @@ The Model aims to fully understand and promote the mental health of individuals, ### Recent Updates +- [2024.5.7][Incremental Pre-training Guide](xtuner_config/pt/README.md) - [2024.4.20] [LLAMA3 fine-tuning guide](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md) and based on [LLaMA3_8b_instruct's aiwei](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei) open source - [2023.4.14] Added [Quick Start](docs/quick_start_EN.md) and Nanny level tutorial [BabyEmoLLM](Baby_EmoLLM.ipynb) - [2024.4.2] Uploaded at Huggingface [Old Mother Counsellor](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main) diff --git a/xtuner_config/pt/README.md b/xtuner_config/pt/README.md new file mode 100644 index 0000000..ee2b0e9 --- /dev/null +++ b/xtuner_config/pt/README.md @@ -0,0 +1,36 @@ +# 增量预训练教程 + +# 增量预训练简介 +增量预训练旨在提升模型在特定领域或任务的能力。 + + +# 预训练流程 +- Step1 处理数据 +- Step2 配置config(全量、Lora、Qlora) +- Step3 启动训练(单卡、多卡、是否使用deepspeed) +- Step4 模型合成 +- Step5 模型测试 +- Step6 模型上传 + +# EmoLLM增量预训练教程 +基于微调中的数据集[datasets](../../datasets)修改而来 + +- Step1 修改`ft2pt.py`中的文件路径 +这里以[output2.json](../../datasets/processed/output2.json)为例,运行脚本生成[pt.json](../../datasets/pt/pt.json) + +- Step2 [config](./internlm2_chat_1_8b_qlora_e3_pt.py) +注意:本config采用了**变长注意力 (Variable Length Attention)** +需要安装flash_attn +`MAX_JOBS=4 pip install flash-attn --no-build-isolation` + + +- Step3 训练: +``` +# On a single GPU +xtuner train internlm2_chat_1_8b_qlora_e3_pt.py --deepspeed deepspeed_zero2 +# On multiple GPUs +(DIST) NPROC_PER_NODE=${GPU_NUM} xtuner train internlm2_chat_1_8b_qlora_e3_pt.py --deepspeed deepspeed_zero2 +(SLURM) srun ${SRUN_ARGS} xtuner train internlm2_chat_1_8b_qlora_e3_pt.py --launcher slurm --deepspeed deepspeed_zero2 +``` + +- 其余流程请参考[微调教程](../../xtuner_config/README.md) \ No newline at end of file diff --git a/xtuner_config/pt/ft2pt.py b/xtuner_config/pt/ft2pt.py new file mode 100644 index 0000000..4151f5c --- /dev/null +++ b/xtuner_config/pt/ft2pt.py @@ -0,0 +1,48 @@ +# 将微调的数据格式转为预训练的格式 +import json + + +def convert(data_path:str, target_path:str): + # 假设原始JSON数据存储在名为'data.json'的文件中 + filename = data_path + + # 读取文件内容 + with open(filename, 'rt', encoding='utf-8') as file: + original_json = file.read() + + # 将原始JSON字符串解析为Python对象 + data = json.loads(original_json) + + # 遍历每个对话 + converted_data = [] + + # 遍历原始数据中的每个对话对象 + for conversation_group in data: + # 遍历每个对话 + for dialog in conversation_group["conversation"]: + # 创建一个新的对话对象,用于存储转换后的对话 + new_conversation_group = { + "conversation": [] + } + # 创建一个新的对话,其中输出被替换为"xxx" + new_dialog = { + "input": '', + "output": f'问题:{dialog["input"]}\n答案:{dialog["output"]}', + } + # 将新的对话添加到新对话对象的列表中 + new_conversation_group["conversation"].append(new_dialog) + + # 将新对话对象添加到转换后的数据列表中 + converted_data.append(new_conversation_group) + + + # 将更新后的数据转换回JSON字符串,并格式化输出 + updated_json = json.dumps(converted_data, indent=4, ensure_ascii=False) + + + # 将更新后的JSON数据写入到新的文件中 + with open(f'{target_path}', 'wt', encoding='utf-8') as file: + file.write(updated_json) + +if __name__ == '__main__': + convert(data_path='./output2.json', target_path='pt.json') \ No newline at end of file diff --git a/xtuner_config/pt/internlm2_chat_1_8b_qlora_e3_pt.py b/xtuner_config/pt/internlm2_chat_1_8b_qlora_e3_pt.py new file mode 100644 index 0000000..d37b476 --- /dev/null +++ b/xtuner_config/pt/internlm2_chat_1_8b_qlora_e3_pt.py @@ -0,0 +1,202 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from datasets import load_dataset +from mmengine.dataset import DefaultSampler +from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, + LoggerHook, ParamSchedulerHook) +from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR +from peft import LoraConfig +from torch.optim import AdamW +from transformers import (AutoModelForCausalLM, AutoTokenizer, + BitsAndBytesConfig) + +from xtuner.dataset import process_hf_dataset +from xtuner.dataset.collate_fns import default_collate_fn +from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory +from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook, + VarlenAttnArgsToMessageHubHook) +from xtuner.engine.runner import TrainLoop +from xtuner.model import SupervisedFinetune +from xtuner.parallel.sequence import SequenceParallelSampler +from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE + +####################################################################### +# PART 1 Settings # +####################################################################### +# Model +pretrained_model_name_or_path = '/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b' +use_varlen_attn = True # True + +# Data +data_path = '/root/wxz/work/pt/pt.json' +prompt_template = PROMPT_TEMPLATE.internlm2_chat +max_length = 2048 +pack_to_max_length = True + +# parallel +sequence_parallel_size = 1 + +# Scheduler & Optimizer +batch_size = 1 # per_device +accumulative_counts = 1 +accumulative_counts *= sequence_parallel_size +dataloader_num_workers = 0 +max_epochs = 3 +optim_type = AdamW +lr = 2e-4 +betas = (0.9, 0.999) +weight_decay = 0 +max_norm = 1 # grad clip +warmup_ratio = 0.03 + +# Save +save_steps = 500 +save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) + +# Evaluate the generation performance during the training +evaluation_freq = 500 +SYSTEM = SYSTEM_TEMPLATE.alpaca +evaluation_inputs = [ + '我们经常因为一些小事争吵,他总是忽略我的感受。我感到很孤独,' +] + +####################################################################### +# PART 2 Model & Tokenizer # +####################################################################### +tokenizer = dict( + type=AutoTokenizer.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + padding_side='right') + +model = dict( + type=SupervisedFinetune, + use_varlen_attn=use_varlen_attn, + llm=dict( + type=AutoModelForCausalLM.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + torch_dtype=torch.float16,), + lora=dict( + type=LoraConfig, + r=64, + lora_alpha=16, + lora_dropout=0.1, + bias='none', + task_type='CAUSAL_LM')) + +####################################################################### +# PART 3 Dataset & Dataloader # +####################################################################### +alpaca_en = dict( + type=process_hf_dataset, + dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)), + tokenizer=tokenizer, + max_length=max_length, + dataset_map_fn=None, + template_map_fn=None, + remove_unused_columns=True, + shuffle_before_pack=True, + pack_to_max_length=pack_to_max_length, + use_varlen_attn=use_varlen_attn) + +sampler = SequenceParallelSampler \ + if sequence_parallel_size > 1 else DefaultSampler +train_dataloader = dict( + batch_size=batch_size, + num_workers=dataloader_num_workers, + dataset=alpaca_en, + sampler=dict(type=sampler, shuffle=True), + collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn)) + +####################################################################### +# PART 4 Scheduler & Optimizer # +####################################################################### +# optimizer +optim_wrapper = dict( + type=AmpOptimWrapper, + optimizer=dict( + type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), + clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), + accumulative_counts=accumulative_counts, + loss_scale='dynamic', + dtype='float16') + +# learning policy +# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 +param_scheduler = [ + dict( + type=LinearLR, + start_factor=1e-5, + by_epoch=True, + begin=0, + end=warmup_ratio * max_epochs, + convert_to_iter_based=True), + dict( + type=CosineAnnealingLR, + eta_min=0.0, + by_epoch=True, + begin=warmup_ratio * max_epochs, + end=max_epochs, + convert_to_iter_based=True) +] + +# train, val, test setting +train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) + +####################################################################### +# PART 5 Runtime # +####################################################################### +# Log the dialogue periodically during the training process, optional +custom_hooks = [ + dict(type=DatasetInfoHook, tokenizer=tokenizer), +] + +if use_varlen_attn: + custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)] + +# configure default hooks +default_hooks = dict( + # record the time of every iteration. + timer=dict(type=IterTimerHook), + # print log every 10 iterations. + logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), + # enable the parameter scheduler. + param_scheduler=dict(type=ParamSchedulerHook), + # save checkpoint per `save_steps`. + checkpoint=dict( + type=CheckpointHook, + by_epoch=False, + interval=save_steps, + max_keep_ckpts=save_total_limit), + # set sampler seed in distributed evrionment. + sampler_seed=dict(type=DistSamplerSeedHook), +) + +# configure environment +env_cfg = dict( + # whether to enable cudnn benchmark + cudnn_benchmark=False, + # set multi process parameters + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), + # set distributed parameters + dist_cfg=dict(backend='nccl'), +) + +# set visualizer +visualizer = None + +# set log level +log_level = 'INFO' + +# load from which checkpoint +load_from = None + +# whether to resume training from the loaded checkpoint +resume = False + +# Defaults to use random seed and disable `deterministic` +randomness = dict(seed=None, deterministic=False) + +# set log processor +log_processor = dict(by_epoch=False)