move scripts/upload_openxlab.py and scripts/trans_process.py

This commit is contained in:
HongCheng 2024-03-17 10:06:20 +09:00
commit baba0d611d
5 changed files with 107 additions and 16 deletions

View File

@ -1,11 +1,11 @@
aistudio _token : '{your_token}' # 文心一言的token aistudio_token : '{your_token}' # 文心一言的token
dashscope_api_key : '{your_api_key}' #通义千问的api_key dashscope_api_key : '{your_api_key}' # 通义千问的api_key
zhiouai_api_key : '{your_api_key}' # 智浦AI的密钥 zhiouai_api_key : '{your_api_key}' # 智谱AI的密钥
# 星火大模型配置 # 星火大模型配置
appid : "{}" # 填写控制台中获取的 APPID 信息 appid : "{}" # 填写控制台中获取的 APPID 信息
api_secret : "{}" # 填写控制台中获取的 APISecret 信息 api_secret : "{}" # 填写控制台中获取的 APISecret 信息
api_key : "{}" # 填写控制台中获取的 APIKey 信息 api_key : "{}" # 填写控制台中获取的 APIKey 信息
system : '现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决' system : '现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决'

View File

@ -1,5 +1,5 @@
erniebot #文心一言 erniebot # 文心一言
dashscope # 通义千问 dashscope # 通义千问
zhipuai # 智浦 zhipuai # 智谱
python-dotenv # 智 python-dotenv # 智
websocket #调用星火大模型的时候会使用 websocket # 调用星火大模型的时候会使用

View File

@ -0,0 +1,78 @@
import json
from tqdm import tqdm
def qwen_api(prompt):
import dashscope
from http import HTTPStatus
dashscope.api_key = "your key"
prompt = "你是一位非常擅长将英文翻译成中文的专家。请你将下面的英文翻译成正确地道的中文,要求只返回翻译的中文句子:\n" + prompt
response = dashscope.Generation.call(
model='qwen-max',
prompt=prompt,
history=[],
)
if response.status_code == HTTPStatus.OK:
result = response.output.text
# print(result)
else:
result = 'ERROR'
return result
def get_conversation_list():
with open('./ESConv.json', 'rt', encoding='utf-8') as file:
data = json.load(file)
idx = 0
conversation_list = []
for itm in tqdm(data):
one_conversation = {
"conversation": []
}
dia_tuple = []
for dia in tqdm(itm['dialog']):
# print(dia['speaker'], dia['content'])
if dia['speaker'] == 'seeker':
dia_tuple.append(qwen_api(dia['content']))
elif dia['speaker'] == 'supporter':
dia_tuple.append(qwen_api(dia['content']))
else:
exit("不存在角色!")
if len(dia_tuple) == 2 and len(one_conversation['conversation']) == 0:
one_conversation['conversation'].append(
{
"system": "现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。",
"input": dia_tuple[0],
"output": dia_tuple[1]
},
)
dia_tuple = []
elif len(dia_tuple) == 2:
one_conversation['conversation'].append(
{
"input": dia_tuple[0],
"output": dia_tuple[1]
},
)
dia_tuple = []
conversation_list.append(one_conversation)
idx += 1
# if (idx == 1):
# print(conversation_list)
# break
print(idx)
return conversation_list
if __name__ == '__main__':
conversation_list = get_conversation_list()
# 将conversation_list保存为一个json文件
with open('conversation_list.json', 'wt', encoding='utf-8') as f:
json.dump(conversation_list, f, ensure_ascii=False)

View File

@ -0,0 +1,3 @@
import os
os.system("openxlab model create --model-repo='jujimeizuo/EmoLLM_Model' -s ./metafile.yml")

View File

@ -34,11 +34,21 @@ def zhipu_api(data, emo):
top_p = round(random.uniform(0.1, 0.9), 2) top_p = round(random.uniform(0.1, 0.9), 2)
messages = getText('user', prompt) messages = getText('user', prompt)
response = client.chat.completions.create(
model='glm-4', # Error code: 400, with error text {"error":{"code":"1301","message":
messages=messages, # "系统检测到输入或生成内容可能包含不安全或敏感内容,请您避免输入易产生敏感内容的提示语,感谢您的配合。"}}
top_p=top_p, try:
) response = client.chat.completions.create(
model='glm-4',
messages=messages,
top_p=top_p,
)
except:
response = client.chat.completions.create(
model='glm-4',
messages=messages,
top_p=top_p,
)
return response.choices[0].message.content return response.choices[0].message.content