Update rag readme and requirements (#229)
This commit is contained in:
commit
b66aed4e31
@ -19,6 +19,8 @@ langchain_openai==0.0.8
|
||||
langchain_text_splitters==0.0.1
|
||||
FlagEmbedding==1.2.8
|
||||
unstructured==0.12.6
|
||||
PyJWT
|
||||
faiss-gpu # faiss-cpu for device without gpu
|
||||
```
|
||||
|
||||
```python
|
||||
@ -32,10 +34,18 @@ pip3 install -r requirements.txt
|
||||
|
||||
### 准备数据
|
||||
|
||||
- txt数据:放入到 src.data.txt 目录下
|
||||
- json 数据:放入到 src.data.json 目录下
|
||||
#### 搭建自己的 Vector DB
|
||||
|
||||
##### TXT 数据
|
||||
|
||||
将需要构建的知识库转化为 Txt 文件放入到 src.data.txt 目录下
|
||||
|
||||
##### JSON 数据
|
||||
|
||||
构建 QA 对并生成 JSON 文件(多轮对话),放入到 src.data.json 目录下
|
||||
|
||||
数据格式如下
|
||||
|
||||
JSON 数据格式如下
|
||||
```python
|
||||
[
|
||||
{
|
||||
@ -53,18 +63,23 @@ JSON 数据格式如下
|
||||
]
|
||||
```
|
||||
|
||||
会根据准备的数据构建vector DB,最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl
|
||||
会根据准备的数据构建 vector DB,最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl。如果已经有 vector DB 则会直接加载对应数据库
|
||||
|
||||
如果已经有 vector DB 则会直接加载对应数据库
|
||||
- 可以直接从 xlab 下载对应 DB(请在rag文件目录下执行对应 code)
|
||||
|
||||
|
||||
**注意**: 可以直接从 xlab 下载对应 DB(请在rag文件目录下执行对应 code)
|
||||
```python
|
||||
# https://openxlab.org.cn/models/detail/Anooyman/EmoLLMRAGTXT/tree/main
|
||||
git lfs install
|
||||
git clone https://code.openxlab.org.cn/Anooyman/EmoLLMRAGTXT.git
|
||||
```
|
||||
|
||||
- 也可以从魔塔社区下载对应数据集
|
||||
|
||||
```python
|
||||
# https://www.modelscope.cn/datasets/Anooyman/EmoLLMRAGTXT/summary
|
||||
git clone https://www.modelscope.cn/datasets/Anooyman/EmoLLMRAGTXT.git
|
||||
```
|
||||
|
||||
|
||||
### 配置 config 文件
|
||||
|
||||
@ -106,7 +121,50 @@ prompt_template = """
|
||||
"""
|
||||
```
|
||||
|
||||
### 调用
|
||||
### 本地调用
|
||||
|
||||
*注意*
|
||||
由于 RAG code 已经集成到 `web_internlm2.py` 中,import 路径不再适用于本地调用
|
||||
因此需要如下调整对应 import 路径
|
||||
|
||||
- src/data_processing.py
|
||||
```python
|
||||
#from rag.src.config.config import (
|
||||
# embedding_path,
|
||||
# embedding_model_name,
|
||||
# doc_dir, qa_dir,
|
||||
# knowledge_pkl_path,
|
||||
# data_dir,
|
||||
# vector_db_dir,
|
||||
# rerank_path,
|
||||
# rerank_model_name,
|
||||
# chunk_size,
|
||||
# chunk_overlap
|
||||
#)
|
||||
from config.config import (
|
||||
embedding_path,
|
||||
embedding_model_name,
|
||||
doc_dir, qa_dir,
|
||||
knowledge_pkl_path,
|
||||
data_dir,
|
||||
vector_db_dir,
|
||||
rerank_path,
|
||||
rerank_model_name,
|
||||
chunk_size,
|
||||
chunk_overlap
|
||||
)
|
||||
```
|
||||
|
||||
- src/pipeline.py
|
||||
```python
|
||||
#from rag.src.data_processing import Data_process
|
||||
#from rag.src.config.config import prompt_template
|
||||
|
||||
from data_processing import Data_process
|
||||
from config.config import prompt_template
|
||||
```
|
||||
|
||||
修改 import 路径之后通过以下 code 执行
|
||||
|
||||
```python
|
||||
cd rag/src
|
||||
@ -128,6 +186,13 @@ python main.py
|
||||
|
||||
## **相关组件**
|
||||
|
||||
这里我们提供了BGE和BCEmbedding两种组合方式,更加推荐性能更加优异的BGE
|
||||
|
||||
### [BGE Github](https://github.com/FlagOpen/FlagEmbedding)
|
||||
|
||||
- [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5): embedding 模型,用于构建 vector DB
|
||||
- [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large): rerank 模型,用于对检索回来的文章段落重排
|
||||
|
||||
### [BCEmbedding](https://github.com/netease-youdao/BCEmbedding?tab=readme-ov-file)
|
||||
|
||||
- [bce-embedding-base_v1](https://hf-mirror.com/maidalun1020/bce-embedding-base_v1): embedding 模型,用于构建 vector DB
|
||||
@ -157,13 +222,13 @@ RAG的经典评估框架,通过以下三个方面进行评估:
|
||||
|
||||
### RAG具体流程
|
||||
|
||||
- 根据数据集构建vector DB
|
||||
- 对用户输入的问题进行embedding
|
||||
- 基于embedding结果在向量数据库中进行检索
|
||||
- 根据数据集构建 vector DB
|
||||
- 对用户输入的问题进行 embedding
|
||||
- 基于 embedding 结果在向量数据库中进行检索
|
||||
- 对召回数据重排序
|
||||
- 依据用户问题和召回数据生成最后的结果
|
||||
|
||||
**Noted**: 当用户选择使用RAG时才会进行上述流程
|
||||
**Note**: 当用户选择使用RAG时才会进行上述流程
|
||||
|
||||
### 后续增强
|
||||
|
||||
|
@ -23,6 +23,13 @@ For details on data collection construction, please refer to [qa_generation_READ
|
||||
|
||||
## **Components**
|
||||
|
||||
There are two sets of embedding and rerank solutions, i.e., the BGE and BCE, we recommend to use the more powerful **BGE** !
|
||||
|
||||
### [BGE Github](https://github.com/FlagOpen/FlagEmbedding)
|
||||
|
||||
- [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5): embedding model, used to build vector DB
|
||||
- [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large): rerank model, used to rerank retrieved documents
|
||||
|
||||
### [BCEmbedding](https://github.com/netease-youdao/BCEmbedding?tab=readme-ov-file)
|
||||
|
||||
- [bce-embedding-base_v1](https://hf-mirror.com/maidalun1020/bce-embedding-base_v1): embedding model, used to build vector DB
|
||||
@ -63,4 +70,4 @@ Later, more evaluation indicators were added, such as: context recall, etc.
|
||||
|
||||
- Add RAGAS evaluation results to the generation process. For example, when the generated results cannot solve the user's problem, it needs to be regenerated.
|
||||
- Add web retrieval to deal with the problem that the corresponding information cannot be retrieved in vector DB
|
||||
- Add multi-channel retrieval to increase recall rate. That is, multiple similar queries are generated based on user input for retrieval.
|
||||
- Add multi-channel retrieval to increase recall rate. That is, multiple similar queries are generated based on user input for retrieval.
|
||||
|
@ -9,4 +9,6 @@ langchain_core==0.1.33
|
||||
langchain_openai==0.0.8
|
||||
langchain_text_splitters==0.0.1
|
||||
FlagEmbedding==1.2.8
|
||||
unstructured==0.12.6
|
||||
unstructured==0.12.6
|
||||
PyJWT
|
||||
faiss-gpu # faiss-cpu for device without gpu
|
||||
|
@ -145,9 +145,9 @@ class Data_process():
|
||||
split_docs = []
|
||||
logger.info(f'Loading txt files from {data_path}')
|
||||
if os.path.isdir(data_path):
|
||||
loader = DirectoryLoader(data_path, glob="**/*.txt",show_progress=True)
|
||||
docs = loader.load()
|
||||
split_docs = text_spliter.split_documents(docs)
|
||||
loader = DirectoryLoader(data_path, glob="**/*.txt",show_progress=True)
|
||||
docs = loader.load()
|
||||
split_docs = text_spliter.split_documents(docs)
|
||||
elif data_path.endswith('.txt'):
|
||||
file_path = data_path
|
||||
logger.info(f'splitting file {file_path}')
|
||||
@ -246,4 +246,4 @@ if __name__ == "__main__":
|
||||
logger.info("After reranking...")
|
||||
for i in range(len(scores)):
|
||||
logger.info(str(scores[i]) + '\n')
|
||||
logger.info(passages[i])
|
||||
logger.info(passages[i])
|
||||
|
Loading…
Reference in New Issue
Block a user