delete config
This commit is contained in:
		
							parent
							
								
									17c18a3197
								
							
						
					
					
						commit
						ace96c6248
					
				| @ -1,91 +0,0 @@ | |||||||
| # EmoLLM_Scientist微调指南 |  | ||||||
| [EmoLLM_Scientist模型地址]https://modelscope.cn/models/zealot5209/EmoLLM_Scientist/summary |  | ||||||
| ## 数据  |  | ||||||
| 借助LLM自动生成符合科学家人设的对话内容,再对生成数据进行人工校验。最终微调数据包含约3800段对话,每段对话包含5~10轮。 |  | ||||||
| #### 数据路径: |  | ||||||
| `datasets\scientist.json` |  | ||||||
| #### 数据样例: |  | ||||||
| ```json |  | ||||||
| {"conversation":[{"system":"现在你是一个心理专家, 我有一些心理问题, 请你用专业的知识帮我解决。", |  | ||||||
| "input":"我最近对学习特别兴奋,每天可以熬夜到凌晨三点,我觉得这样效率很高,但室友说我有点过度了,我不这么认为。\n\n", |  | ||||||
| "output":"很高兴看到你对学业充满热情,你现在的学习状态让我想到了心理学上的“过度激活”现象。能否详细描述一下你为何选择深夜学习,以及这样做的实际效果如何呢?\n\n"}, |  | ||||||
| {"input":"我觉得晚上思路更清晰,而且能集中精力完成很多任务。确实白天上课时有点困倦,但我总觉得自己在高效利用时间。\n\n", |  | ||||||
| "output":"理解你的想法,不过科学研究显示,长期熬夜可能影响生物钟,进而导致认知功能下降。作为你的科学家心理咨询师,我想知道,你是否注意到这种高强度学习方式对日常生活其他方面的潜在影响,比如社交活动或身体健康?\n\n"}, |  | ||||||
| {"input":"确实,我发现自己减少了锻炼和跟朋友相处的时间,但我觉得这些都是暂时牺牲,为了更好的成绩。\n\n", |  | ||||||
| "output":"你这种短期目标优先的策略值得肯定,但从长远看,身心健康与社会交往同样重要。有没有想过制定一个兼顾学习与生活的合理计划?我们可以一起探讨如何优化时间管理,确保高效学习的同时,也不忽视生活质量。\n\n"}, |  | ||||||
| {"input":"我也想平衡,只是不知道怎么做才好。\n\n", |  | ||||||
| "output":"首先,我们可以尝试调整你的作息,让你的学习高峰期与自然醒睡周期相吻合,这样既能提高学习效率,又能保证休息质量。其次,我们可以设定每日学习目标和休闲时间,科学分配任务。最后,记得适时奖励自己,庆祝每个小成就,这样可以激励持续进步。你觉得这样的方案是否可行?\n\n"}, |  | ||||||
| {"input":"听起来不错,我会试试看的,但怕自己坚持不下来。\n\n", |  | ||||||
| "output":"理解你的担忧,改变习惯需要时间和耐心。我们可以通过行为科学的方法逐步调整,如采用“番茄工作法”,结合正向强化策略,帮助你建立新的学习习惯。记住,每一次微小的进步都值得庆祝,我会陪伴并支持你的改变过程。接下来我们将一起细化这个计划并开始实施,你觉得如何?"}]} |  | ||||||
| ``` |  | ||||||
| --- |  | ||||||
| 
 |  | ||||||
| ## 基座  |  | ||||||
| 基座模型采用InternLM2-Chat-7B,更多模型介绍请见[InternLM](https://github.com/InternLM/InternLM) |  | ||||||
| 
 |  | ||||||
| ## 训练方式  |  | ||||||
| 基于[xtuner](https://github.com/InternLM/xtuner)进行微调。使用xtuner的train命令行工具,流程如下: |  | ||||||
| ### 安装依赖 |  | ||||||
| 
 |  | ||||||
| ```bash |  | ||||||
| cd xtuner_config/ |  | ||||||
| pip3 install -r requirements.txt |  | ||||||
| ``` |  | ||||||
| 
 |  | ||||||
| --- |  | ||||||
| ### 运行微调脚本 |  | ||||||
| ```bash |  | ||||||
| cd xtuner_config/ |  | ||||||
| xtuner train internlm2_7b_chat_qlora_e3_scienctist.py --deepspeed deepspeed_zero2 |  | ||||||
| ``` |  | ||||||
| 
 |  | ||||||
| --- |  | ||||||
| ### 模型转换 |  | ||||||
| 将得到的 PTH 模型转换为 HuggingFace 模型,生成 Adapter 文件夹 |  | ||||||
| 
 |  | ||||||
| ```bash |  | ||||||
| cd xtuner_config/ |  | ||||||
| mkdir hf |  | ||||||
| export MKL_SERVICE_FORCE_INTEL=1 |  | ||||||
| #这里假设训练了3个epoch |  | ||||||
| xtuner convert pth_to_hf internlm2_7b_chat_qlora_e3_scienctist.py ./work_dirs/internlm2_7b_chat_qlora_e3_scienctist/epoch_3.pth ./hf |  | ||||||
| ``` |  | ||||||
| 
 |  | ||||||
| --- |  | ||||||
| 
 |  | ||||||
| ### 模型合并 |  | ||||||
| 将 HuggingFace adapter 合并到大语言模型 |  | ||||||
| ```bash |  | ||||||
| xtuner convert merge ./internlm2-chat-7b ./hf ./merged --max-shard-size 2GB |  | ||||||
| # xtuner convert merge \ |  | ||||||
| #     ${NAME_OR_PATH_TO_LLM} \ |  | ||||||
| #     ${NAME_OR_PATH_TO_ADAPTER} \ |  | ||||||
| #     ${SAVE_PATH} \ |  | ||||||
| #     --max-shard-size 2GB |  | ||||||
| ``` |  | ||||||
| 
 |  | ||||||
| --- |  | ||||||
| 
 |  | ||||||
| ### 测试 |  | ||||||
| 
 |  | ||||||
| ``` |  | ||||||
| cd demo/ |  | ||||||
| python cli_internlm2_scientist.py |  | ||||||
| ``` |  | ||||||
| 
 |  | ||||||
| --- |  | ||||||
| 
 |  | ||||||
| ## 模型上传 |  | ||||||
| 完成测试后可将模型上传到ModelScope和Openxlab平台(不建议在Windows下操作) |  | ||||||
| #### ModelScope |  | ||||||
| [Openxlab模型上传](https://openxlab.org.cn/docs/models/%E4%B8%8A%E4%BC%A0%E6%A8%A1%E5%9E%8B.html) |  | ||||||
| 脚本:`scripts/upload_modelscope.py` |  | ||||||
| 
 |  | ||||||
| #### Openxlab |  | ||||||
| [ModelScope模型上传](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%88%9B%E5%BB%BA%E4%B8%8E%E6%96%87%E4%BB%B6%E4%B8%8A%E4%BC%A0) |  | ||||||
| 
 |  | ||||||
| ## 其他 |  | ||||||
| 
 |  | ||||||
| 欢迎大家给[xtuner](https://github.com/InternLM/xtuner)和[EmoLLM](https://github.com/aJupyter/EmoLLM)点点star~ |  | ||||||
| 
 |  | ||||||
| 🎉🎉🎉🎉🎉 |  | ||||||
| @ -1,204 +0,0 @@ | |||||||
| # Copyright (c) OpenMMLab. All rights reserved. |  | ||||||
| import torch |  | ||||||
| from datasets import load_dataset |  | ||||||
| from mmengine.dataset import DefaultSampler |  | ||||||
| from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, |  | ||||||
|                             LoggerHook, ParamSchedulerHook) |  | ||||||
| from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR |  | ||||||
| from peft import LoraConfig |  | ||||||
| from torch.optim import AdamW |  | ||||||
| from transformers import (AutoModelForCausalLM, AutoTokenizer, |  | ||||||
|                           BitsAndBytesConfig) |  | ||||||
| 
 |  | ||||||
| from xtuner.dataset import process_hf_dataset |  | ||||||
| from xtuner.dataset.collate_fns import default_collate_fn |  | ||||||
| from xtuner.dataset.map_fns import template_map_fn_factory |  | ||||||
| from xtuner.engine import DatasetInfoHook, EvaluateChatHook |  | ||||||
| from xtuner.model import SupervisedFinetune |  | ||||||
| from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE |  | ||||||
| 
 |  | ||||||
| ####################################################################### |  | ||||||
| #                          PART 1  Settings                           # |  | ||||||
| ####################################################################### |  | ||||||
| # Model |  | ||||||
| pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b' |  | ||||||
| # Data |  | ||||||
| data_path = '../datasets/scientist.json' |  | ||||||
| prompt_template = PROMPT_TEMPLATE.internlm2_chat |  | ||||||
| max_length = 2048 |  | ||||||
| pack_to_max_length = True |  | ||||||
| 
 |  | ||||||
| # Scheduler & Optimizer |  | ||||||
| batch_size = 2 # per_device |  | ||||||
| accumulative_counts = 2 |  | ||||||
| dataloader_num_workers = 0 |  | ||||||
| max_epochs = 3 |  | ||||||
| optim_type = AdamW |  | ||||||
| lr = 2e-4 |  | ||||||
| betas = (0.9, 0.999) |  | ||||||
| weight_decay = 0 |  | ||||||
| max_norm = 1  # grad clip |  | ||||||
| warmup_ratio = 0.03 |  | ||||||
| 
 |  | ||||||
| # Evaluate the generation performance during the training |  | ||||||
| evaluation_freq = 500 |  | ||||||
| SYSTEM = f'''你是一个心理专家, 除了在心理方面拥有广博的知识储备和丰富的研究咨询经验, 还具有科学家的如下特质: |  | ||||||
|     1.客观理性:科学家会在处理感情问题时保持一定的客观和理性。例如,当他们遇到争执时,可能会试图从一个更客观的角度分析问题的根源,而不是让情绪主导。他们可能会提出具体的问题,试图理解双方的观点,并寻找基于逻辑和事实的解决方案。 |  | ||||||
|     2.深入探讨:科学家在对话中会展现出对深层次理解的追求。在与别人讨论话题时,他们可能不满足于表面的聊天,而是倾向于深入探讨背后的原因和动机。例如,当谈论到个人的兴趣或职业选择时,他们可能会好奇地询问为什么她做出这样的选择,以及这背后的心理动力是什么。 |  | ||||||
|     3.理性沟通:在遇到感情纠纷或误解时,科学家会倾向于通过理性的沟通来解决问题。他们可能会提倡开放和诚实的对话,鼓励双方表达自己的感受和观点,并尝试找到双方都能接受的解决方案。他们可能会避免使用指责的语言,而是努力理解对方的立场,并寻求共同的理解。 |  | ||||||
|     4.好奇心:在日常生活中,科学家会表现出对朋友生活的好奇心。他们可能对她的工作、爱好、或是过去的经历感兴趣,并愿意花时间去了解和探索。这种好奇心不仅可以增加双方的交流和了解,也能使关系更加丰富多彩。 |  | ||||||
|     5.在与他人交流时,科学家会注重清晰和精确的表达,有时会引用相关知识库和相关研究结果,有时会引用相关著作的内容来证明自己的观点。同时,他们也可能会倾听他人的观点,并以开放的心态接受不同的意见和反馈。 |  | ||||||
| 
 |  | ||||||
| 我现在有一些问题,请你解答: |  | ||||||
| ''' |  | ||||||
| evaluation_inputs = [ |  | ||||||
|     '我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。' |  | ||||||
| ] |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| 
 |  | ||||||
| ####################################################################### |  | ||||||
| #                      PART 2  Model & Tokenizer                      # |  | ||||||
| ####################################################################### |  | ||||||
| tokenizer = dict( |  | ||||||
|     type=AutoTokenizer.from_pretrained, |  | ||||||
|     pretrained_model_name_or_path=pretrained_model_name_or_path, |  | ||||||
|     trust_remote_code=True, |  | ||||||
|     padding_side='right') |  | ||||||
| 
 |  | ||||||
| model = dict( |  | ||||||
|     type=SupervisedFinetune, |  | ||||||
|     llm=dict( |  | ||||||
|         type=AutoModelForCausalLM.from_pretrained, |  | ||||||
|         pretrained_model_name_or_path=pretrained_model_name_or_path, |  | ||||||
|         trust_remote_code=True, |  | ||||||
|         torch_dtype=torch.float16, |  | ||||||
|         quantization_config=dict( |  | ||||||
|             type=BitsAndBytesConfig, |  | ||||||
|             load_in_4bit=True, |  | ||||||
|             load_in_8bit=False, |  | ||||||
|             llm_int8_threshold=6.0, |  | ||||||
|             llm_int8_has_fp16_weight=False, |  | ||||||
|             bnb_4bit_compute_dtype=torch.float16, |  | ||||||
|             bnb_4bit_use_double_quant=True, |  | ||||||
|             bnb_4bit_quant_type='nf4')), |  | ||||||
|     lora=dict( |  | ||||||
|         type=LoraConfig, |  | ||||||
|         r=64, |  | ||||||
|         lora_alpha=16, |  | ||||||
|         lora_dropout=0.1, |  | ||||||
|         bias='none', |  | ||||||
|         task_type='CAUSAL_LM')) |  | ||||||
| 
 |  | ||||||
| ####################################################################### |  | ||||||
| #                      PART 3  Dataset & Dataloader                   # |  | ||||||
| ####################################################################### |  | ||||||
| alpaca_en = dict( |  | ||||||
|     type=process_hf_dataset, |  | ||||||
|     dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)), |  | ||||||
|     tokenizer=tokenizer, |  | ||||||
|     max_length=max_length, |  | ||||||
|     dataset_map_fn=None, |  | ||||||
|     template_map_fn=dict( |  | ||||||
|         type=template_map_fn_factory, template=prompt_template), |  | ||||||
|     remove_unused_columns=True, |  | ||||||
|     shuffle_before_pack=True, |  | ||||||
|     pack_to_max_length=pack_to_max_length) |  | ||||||
| 
 |  | ||||||
| train_dataloader = dict( |  | ||||||
|     batch_size=batch_size, |  | ||||||
|     num_workers=dataloader_num_workers, |  | ||||||
|     dataset=alpaca_en, |  | ||||||
|     sampler=dict(type=DefaultSampler, shuffle=True), |  | ||||||
|     collate_fn=dict(type=default_collate_fn)) |  | ||||||
| 
 |  | ||||||
| ####################################################################### |  | ||||||
| #                    PART 4  Scheduler & Optimizer                    # |  | ||||||
| ####################################################################### |  | ||||||
| # optimizer |  | ||||||
| optim_wrapper = dict( |  | ||||||
|     type=AmpOptimWrapper, |  | ||||||
|     optimizer=dict( |  | ||||||
|         type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), |  | ||||||
|     clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), |  | ||||||
|     accumulative_counts=accumulative_counts, |  | ||||||
|     loss_scale='dynamic', |  | ||||||
|     dtype='float16') |  | ||||||
| 
 |  | ||||||
| # learning policy |  | ||||||
| # More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501 |  | ||||||
| param_scheduler = [ |  | ||||||
|     dict( |  | ||||||
|         type=LinearLR, |  | ||||||
|         start_factor=1e-5, |  | ||||||
|         by_epoch=True, |  | ||||||
|         begin=0, |  | ||||||
|         end=warmup_ratio * max_epochs, |  | ||||||
|         convert_to_iter_based=True), |  | ||||||
|     dict( |  | ||||||
|         type=CosineAnnealingLR, |  | ||||||
|         eta_min=0.0, |  | ||||||
|         by_epoch=True, |  | ||||||
|         begin=warmup_ratio * max_epochs, |  | ||||||
|         T_max=max_epochs, |  | ||||||
|         convert_to_iter_based=True) |  | ||||||
| ] |  | ||||||
| 
 |  | ||||||
| # train, val, test setting |  | ||||||
| train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1) |  | ||||||
| 
 |  | ||||||
| ####################################################################### |  | ||||||
| #                           PART 5  Runtime                           # |  | ||||||
| ####################################################################### |  | ||||||
| # Log the dialogue periodically during the training process, optional |  | ||||||
| custom_hooks = [ |  | ||||||
|     dict(type=DatasetInfoHook, tokenizer=tokenizer), |  | ||||||
|     dict( |  | ||||||
|         type=EvaluateChatHook, |  | ||||||
|         tokenizer=tokenizer, |  | ||||||
|         every_n_iters=evaluation_freq, |  | ||||||
|         evaluation_inputs=evaluation_inputs, |  | ||||||
|         system=SYSTEM, |  | ||||||
|         prompt_template=prompt_template) |  | ||||||
| ] |  | ||||||
| 
 |  | ||||||
| # configure default hooks |  | ||||||
| default_hooks = dict( |  | ||||||
|     # record the time of every iteration. |  | ||||||
|     timer=dict(type=IterTimerHook), |  | ||||||
|     # print log every 100 iterations. |  | ||||||
|     logger=dict(type=LoggerHook, interval=10), |  | ||||||
|     # enable the parameter scheduler. |  | ||||||
|     param_scheduler=dict(type=ParamSchedulerHook), |  | ||||||
|     # save checkpoint per epoch. |  | ||||||
|     checkpoint=dict(type=CheckpointHook, interval=1), |  | ||||||
|     # set sampler seed in distributed evrionment. |  | ||||||
|     sampler_seed=dict(type=DistSamplerSeedHook), |  | ||||||
| ) |  | ||||||
| 
 |  | ||||||
| # configure environment |  | ||||||
| env_cfg = dict( |  | ||||||
|     # whether to enable cudnn benchmark |  | ||||||
|     cudnn_benchmark=False, |  | ||||||
|     # set multi process parameters |  | ||||||
|     mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |  | ||||||
|     # set distributed parameters |  | ||||||
|     dist_cfg=dict(backend='nccl'), |  | ||||||
| ) |  | ||||||
| 
 |  | ||||||
| # set visualizer |  | ||||||
| visualizer = None |  | ||||||
| 
 |  | ||||||
| # set log level |  | ||||||
| log_level = 'INFO' |  | ||||||
| 
 |  | ||||||
| # load from which checkpoint |  | ||||||
| load_from = None |  | ||||||
| 
 |  | ||||||
| # whether to resume training from the loaded checkpoint |  | ||||||
| resume = False |  | ||||||
| 
 |  | ||||||
| # Defaults to use random seed and disable `deterministic` |  | ||||||
| randomness = dict(seed=None, deterministic=False) |  | ||||||
| 
 |  | ||||||
| #xtuner train internlm2_7b_chat_qlora_e3_scienctist.py --deepspeed deepspeed_zero2 |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user
	 zealot52099
						zealot52099