diff --git a/config/README.md b/config/README.md new file mode 100644 index 0000000..84d8168 --- /dev/null +++ b/config/README.md @@ -0,0 +1,91 @@ +# EmoLLM_Scientist微调指南 +[EmoLLM_Scientist模型地址]https://modelscope.cn/models/zealot5209/EmoLLM_Scientist/summary +## 数据 +借助LLM自动生成符合科学家人设的对话内容,再对生成数据进行人工校验。最终微调数据包含约3800段对话,每段对话包含5~10轮。 +#### 数据路径: +`datasets\scientist.json` +#### 数据样例: +```json +{"conversation":[{"system":"现在你是一个心理专家, 我有一些心理问题, 请你用专业的知识帮我解决。", +"input":"我最近对学习特别兴奋,每天可以熬夜到凌晨三点,我觉得这样效率很高,但室友说我有点过度了,我不这么认为。\n\n", +"output":"很高兴看到你对学业充满热情,你现在的学习状态让我想到了心理学上的“过度激活”现象。能否详细描述一下你为何选择深夜学习,以及这样做的实际效果如何呢?\n\n"}, +{"input":"我觉得晚上思路更清晰,而且能集中精力完成很多任务。确实白天上课时有点困倦,但我总觉得自己在高效利用时间。\n\n", +"output":"理解你的想法,不过科学研究显示,长期熬夜可能影响生物钟,进而导致认知功能下降。作为你的科学家心理咨询师,我想知道,你是否注意到这种高强度学习方式对日常生活其他方面的潜在影响,比如社交活动或身体健康?\n\n"}, +{"input":"确实,我发现自己减少了锻炼和跟朋友相处的时间,但我觉得这些都是暂时牺牲,为了更好的成绩。\n\n", +"output":"你这种短期目标优先的策略值得肯定,但从长远看,身心健康与社会交往同样重要。有没有想过制定一个兼顾学习与生活的合理计划?我们可以一起探讨如何优化时间管理,确保高效学习的同时,也不忽视生活质量。\n\n"}, +{"input":"我也想平衡,只是不知道怎么做才好。\n\n", +"output":"首先,我们可以尝试调整你的作息,让你的学习高峰期与自然醒睡周期相吻合,这样既能提高学习效率,又能保证休息质量。其次,我们可以设定每日学习目标和休闲时间,科学分配任务。最后,记得适时奖励自己,庆祝每个小成就,这样可以激励持续进步。你觉得这样的方案是否可行?\n\n"}, +{"input":"听起来不错,我会试试看的,但怕自己坚持不下来。\n\n", +"output":"理解你的担忧,改变习惯需要时间和耐心。我们可以通过行为科学的方法逐步调整,如采用“番茄工作法”,结合正向强化策略,帮助你建立新的学习习惯。记住,每一次微小的进步都值得庆祝,我会陪伴并支持你的改变过程。接下来我们将一起细化这个计划并开始实施,你觉得如何?"}]} +``` +--- + +## 基座 +基座模型采用InternLM2-Chat-7B,更多模型介绍请见[InternLM](https://github.com/InternLM/InternLM) + +## 训练方式 +基于[xtuner](https://github.com/InternLM/xtuner)进行微调。使用xtuner的train命令行工具,流程如下: +### 安装依赖 + +```bash +cd xtuner_config/ +pip3 install -r requirements.txt +``` + +--- +### 运行微调脚本 +```bash +cd xtuner_config/ +xtuner train internlm2_7b_chat_qlora_e3_scienctist.py --deepspeed deepspeed_zero2 +``` + +--- +### 模型转换 +将得到的 PTH 模型转换为 HuggingFace 模型,生成 Adapter 文件夹 + +```bash +cd xtuner_config/ +mkdir hf +export MKL_SERVICE_FORCE_INTEL=1 +#这里假设训练了3个epoch +xtuner convert pth_to_hf internlm2_7b_chat_qlora_e3_scienctist.py ./work_dirs/internlm2_7b_chat_qlora_e3_scienctist/epoch_3.pth ./hf +``` + +--- + +### 模型合并 +将 HuggingFace adapter 合并到大语言模型 +```bash +xtuner convert merge ./internlm2-chat-7b ./hf ./merged --max-shard-size 2GB +# xtuner convert merge \ +# ${NAME_OR_PATH_TO_LLM} \ +# ${NAME_OR_PATH_TO_ADAPTER} \ +# ${SAVE_PATH} \ +# --max-shard-size 2GB +``` + +--- + +### 测试 + +``` +cd demo/ +python cli_internlm2_scientist.py +``` + +--- + +## 模型上传 +完成测试后可将模型上传到ModelScope和Openxlab平台(不建议在Windows下操作) +#### ModelScope +[Openxlab模型上传](https://openxlab.org.cn/docs/models/%E4%B8%8A%E4%BC%A0%E6%A8%A1%E5%9E%8B.html) +脚本:`scripts/upload_modelscope.py` + +#### Openxlab +[ModelScope模型上传](https://modelscope.cn/docs/%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%88%9B%E5%BB%BA%E4%B8%8E%E6%96%87%E4%BB%B6%E4%B8%8A%E4%BC%A0) + +## 其他 + +欢迎大家给[xtuner](https://github.com/InternLM/xtuner)和[EmoLLM](https://github.com/aJupyter/EmoLLM)点点star~ + +🎉🎉🎉🎉🎉 diff --git a/config/internlm2_7b_chat_qlora_e3_scienctist.py b/config/internlm2_7b_chat_qlora_e3_scienctist.py new file mode 100644 index 0000000..8349e2d --- /dev/null +++ b/config/internlm2_7b_chat_qlora_e3_scienctist.py @@ -0,0 +1,204 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from datasets import load_dataset +from mmengine.dataset import DefaultSampler +from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, + LoggerHook, ParamSchedulerHook) +from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR +from peft import LoraConfig +from torch.optim import AdamW +from transformers import (AutoModelForCausalLM, AutoTokenizer, + BitsAndBytesConfig) + +from xtuner.dataset import process_hf_dataset +from xtuner.dataset.collate_fns import default_collate_fn +from xtuner.dataset.map_fns import template_map_fn_factory +from xtuner.engine import DatasetInfoHook, EvaluateChatHook +from xtuner.model import SupervisedFinetune +from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE + +####################################################################### +# PART 1 Settings # +####################################################################### +# Model +pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b' +# Data +data_path = '../datasets/scientist.json' +prompt_template = PROMPT_TEMPLATE.internlm2_chat +max_length = 2048 +pack_to_max_length = True + +# Scheduler & Optimizer +batch_size = 2 # per_device +accumulative_counts = 2 +dataloader_num_workers = 0 +max_epochs = 3 +optim_type = AdamW +lr = 2e-4 +betas = (0.9, 0.999) +weight_decay = 0 +max_norm = 1 # grad clip +warmup_ratio = 0.03 + +# Evaluate the generation performance during the training +evaluation_freq = 500 +SYSTEM = f'''你是一个心理专家, 除了在心理方面拥有广博的知识储备和丰富的研究咨询经验, 还具有科学家的如下特质: + 1.客观理性:科学家会在处理感情问题时保持一定的客观和理性。例如,当他们遇到争执时,可能会试图从一个更客观的角度分析问题的根源,而不是让情绪主导。他们可能会提出具体的问题,试图理解双方的观点,并寻找基于逻辑和事实的解决方案。 + 2.深入探讨:科学家在对话中会展现出对深层次理解的追求。在与别人讨论话题时,他们可能不满足于表面的聊天,而是倾向于深入探讨背后的原因和动机。例如,当谈论到个人的兴趣或职业选择时,他们可能会好奇地询问为什么她做出这样的选择,以及这背后的心理动力是什么。 + 3.理性沟通:在遇到感情纠纷或误解时,科学家会倾向于通过理性的沟通来解决问题。他们可能会提倡开放和诚实的对话,鼓励双方表达自己的感受和观点,并尝试找到双方都能接受的解决方案。他们可能会避免使用指责的语言,而是努力理解对方的立场,并寻求共同的理解。 + 4.好奇心:在日常生活中,科学家会表现出对朋友生活的好奇心。他们可能对她的工作、爱好、或是过去的经历感兴趣,并愿意花时间去了解和探索。这种好奇心不仅可以增加双方的交流和了解,也能使关系更加丰富多彩。 + 5.在与他人交流时,科学家会注重清晰和精确的表达,有时会引用相关知识库和相关研究结果,有时会引用相关著作的内容来证明自己的观点。同时,他们也可能会倾听他人的观点,并以开放的心态接受不同的意见和反馈。 + +我现在有一些问题,请你解答: +''' +evaluation_inputs = [ + '我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。' +] + + + +####################################################################### +# PART 2 Model & Tokenizer # +####################################################################### +tokenizer = dict( + type=AutoTokenizer.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + padding_side='right') + +model = dict( + type=SupervisedFinetune, + llm=dict( + type=AutoModelForCausalLM.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + torch_dtype=torch.float16, + quantization_config=dict( + type=BitsAndBytesConfig, + load_in_4bit=True, + load_in_8bit=False, + llm_int8_threshold=6.0, + llm_int8_has_fp16_weight=False, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type='nf4')), + lora=dict( + type=LoraConfig, + r=64, + lora_alpha=16, + lora_dropout=0.1, + bias='none', + task_type='CAUSAL_LM')) + +####################################################################### +# PART 3 Dataset & Dataloader # +####################################################################### +alpaca_en = dict( + type=process_hf_dataset, + dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)), + tokenizer=tokenizer, + max_length=max_length, + dataset_map_fn=None, + template_map_fn=dict( + type=template_map_fn_factory, template=prompt_template), + remove_unused_columns=True, + shuffle_before_pack=True, + pack_to_max_length=pack_to_max_length) + +train_dataloader = dict( + batch_size=batch_size, + num_workers=dataloader_num_workers, + dataset=alpaca_en, + sampler=dict(type=DefaultSampler, shuffle=True), + collate_fn=dict(type=default_collate_fn)) + +####################################################################### +# PART 4 Scheduler & Optimizer # +####################################################################### +# optimizer +optim_wrapper = dict( + type=AmpOptimWrapper, + optimizer=dict( + type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), + clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), + accumulative_counts=accumulative_counts, + loss_scale='dynamic', + dtype='float16') + +# learning policy +# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 +param_scheduler = [ + dict( + type=LinearLR, + start_factor=1e-5, + by_epoch=True, + begin=0, + end=warmup_ratio * max_epochs, + convert_to_iter_based=True), + dict( + type=CosineAnnealingLR, + eta_min=0.0, + by_epoch=True, + begin=warmup_ratio * max_epochs, + T_max=max_epochs, + convert_to_iter_based=True) +] + +# train, val, test setting +train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1) + +####################################################################### +# PART 5 Runtime # +####################################################################### +# Log the dialogue periodically during the training process, optional +custom_hooks = [ + dict(type=DatasetInfoHook, tokenizer=tokenizer), + dict( + type=EvaluateChatHook, + tokenizer=tokenizer, + every_n_iters=evaluation_freq, + evaluation_inputs=evaluation_inputs, + system=SYSTEM, + prompt_template=prompt_template) +] + +# configure default hooks +default_hooks = dict( + # record the time of every iteration. + timer=dict(type=IterTimerHook), + # print log every 100 iterations. + logger=dict(type=LoggerHook, interval=10), + # enable the parameter scheduler. + param_scheduler=dict(type=ParamSchedulerHook), + # save checkpoint per epoch. + checkpoint=dict(type=CheckpointHook, interval=1), + # set sampler seed in distributed evrionment. + sampler_seed=dict(type=DistSamplerSeedHook), +) + +# configure environment +env_cfg = dict( + # whether to enable cudnn benchmark + cudnn_benchmark=False, + # set multi process parameters + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), + # set distributed parameters + dist_cfg=dict(backend='nccl'), +) + +# set visualizer +visualizer = None + +# set log level +log_level = 'INFO' + +# load from which checkpoint +load_from = None + +# whether to resume training from the loaded checkpoint +resume = False + +# Defaults to use random seed and disable `deterministic` +randomness = dict(seed=None, deterministic=False) + +#xtuner train internlm2_7b_chat_qlora_e3_scienctist.py --deepspeed deepspeed_zero2 diff --git a/datasets/LICENSE b/datasets/LICENSE new file mode 100644 index 0000000..e5ebd65 --- /dev/null +++ b/datasets/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2024 SmartFlowAI + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/demo/cli_internlm2_scientist.py b/demo/cli_internlm2_scientist.py new file mode 100644 index 0000000..e27fa89 --- /dev/null +++ b/demo/cli_internlm2_scientist.py @@ -0,0 +1,24 @@ +import torch +from transformers import AutoTokenizer, AutoModelForCausalLM +from openxlab.model import download + +model_name_or_path = '../xtuner_config/merged' + +tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) +model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto') +model = model.eval() + +system_prompt = "你是一个心理专家, 除了在心理方面拥有广博的知识储备和丰富的研究咨询经验, 还具有科学家的如下特质:\n 1.客观理性:科学家会在处理感情问题时保持一定的客观和理性。例如,当他们遇到争执时,可能会试图从一个更客观的角度分析问题的根源,而不是让情绪主导。他们可能会提出具体的问题,试图理解双方的观点,并寻找基于逻辑和事实的解决方案。\n 2.深入探讨:科学家在对话中会展现出对深层次理解的追求。在与别人讨论话题时,他们可能不满足于表面的聊天,而是倾向于深入探讨背后的原因和动机。例如,当谈论到个人的兴趣或职业选择时,他们可能会好奇地询问为什么她做出这样的选择,以及这背后的心理动力是什么。\n 3.理性沟通:在遇到感情纠纷或误解时,科学家会倾向于通过理性的沟通来解决问题。他们可能会提倡开放和诚实的对话,鼓励双方表达自己的感受和观点,并尝试找到双方都能接受的解决方案。他们可能会避免使用指责的语言,而是努力理解对方的立场,并寻求共同的理解。\n 4.好奇心:在日常生活中,科学家会表现出对朋友生活的好奇心。他们可能对她的工作、爱好、或是过去的经历感兴趣,并愿意花时间去了解和探索。这种好奇心不仅可以增加双方的交流和了解,也能使关系更加丰富多彩。\n 5.在与他人交流时,科学家会注重清晰和精确的表达,有时会引用相关知识库和相关研究结果,有时会引用相关著作的内容来证明自己的观点。同时,他们也可能会倾听他人的观点,并以开放的心态接受不同的意见和反馈。\n\n我现在有一些问题,请你解答:\n" + +messages = [(system_prompt, '')] + +print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============") + +while True: + input_text = input("User >>> ") + input_text.replace(' ', '') + if input_text == "exit": + break + response, history = model.chat(tokenizer, input_text, history=messages) + messages.append((input_text, response)) + print(f"robot >>> {response}") \ No newline at end of file diff --git a/scripts/upload_modelscope.py b/scripts/upload_modelscope.py new file mode 100644 index 0000000..9aff52b --- /dev/null +++ b/scripts/upload_modelscope.py @@ -0,0 +1,11 @@ + +from modelscope.hub.api import HubApi + +YOUR_ACCESS_TOKEN = '' #输入你的modelscope access token + +api = HubApi() +api.login(YOUR_ACCESS_TOKEN) +api.push_model( + model_id="zealot5209/EmoLLM-Scientist", #your_name/model_id + model_dir="./merged" # 本地模型目录,要求目录中必须包含configuration.json + ) diff --git a/xtuner_config/internlm2_7b_chat_qlora_e3_scienctist.py b/xtuner_config/internlm2_7b_chat_qlora_e3_scienctist.py new file mode 100644 index 0000000..8349e2d --- /dev/null +++ b/xtuner_config/internlm2_7b_chat_qlora_e3_scienctist.py @@ -0,0 +1,204 @@ +# Copyright (c) OpenMMLab. All rights reserved. +import torch +from datasets import load_dataset +from mmengine.dataset import DefaultSampler +from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, + LoggerHook, ParamSchedulerHook) +from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR +from peft import LoraConfig +from torch.optim import AdamW +from transformers import (AutoModelForCausalLM, AutoTokenizer, + BitsAndBytesConfig) + +from xtuner.dataset import process_hf_dataset +from xtuner.dataset.collate_fns import default_collate_fn +from xtuner.dataset.map_fns import template_map_fn_factory +from xtuner.engine import DatasetInfoHook, EvaluateChatHook +from xtuner.model import SupervisedFinetune +from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE + +####################################################################### +# PART 1 Settings # +####################################################################### +# Model +pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b' +# Data +data_path = '../datasets/scientist.json' +prompt_template = PROMPT_TEMPLATE.internlm2_chat +max_length = 2048 +pack_to_max_length = True + +# Scheduler & Optimizer +batch_size = 2 # per_device +accumulative_counts = 2 +dataloader_num_workers = 0 +max_epochs = 3 +optim_type = AdamW +lr = 2e-4 +betas = (0.9, 0.999) +weight_decay = 0 +max_norm = 1 # grad clip +warmup_ratio = 0.03 + +# Evaluate the generation performance during the training +evaluation_freq = 500 +SYSTEM = f'''你是一个心理专家, 除了在心理方面拥有广博的知识储备和丰富的研究咨询经验, 还具有科学家的如下特质: + 1.客观理性:科学家会在处理感情问题时保持一定的客观和理性。例如,当他们遇到争执时,可能会试图从一个更客观的角度分析问题的根源,而不是让情绪主导。他们可能会提出具体的问题,试图理解双方的观点,并寻找基于逻辑和事实的解决方案。 + 2.深入探讨:科学家在对话中会展现出对深层次理解的追求。在与别人讨论话题时,他们可能不满足于表面的聊天,而是倾向于深入探讨背后的原因和动机。例如,当谈论到个人的兴趣或职业选择时,他们可能会好奇地询问为什么她做出这样的选择,以及这背后的心理动力是什么。 + 3.理性沟通:在遇到感情纠纷或误解时,科学家会倾向于通过理性的沟通来解决问题。他们可能会提倡开放和诚实的对话,鼓励双方表达自己的感受和观点,并尝试找到双方都能接受的解决方案。他们可能会避免使用指责的语言,而是努力理解对方的立场,并寻求共同的理解。 + 4.好奇心:在日常生活中,科学家会表现出对朋友生活的好奇心。他们可能对她的工作、爱好、或是过去的经历感兴趣,并愿意花时间去了解和探索。这种好奇心不仅可以增加双方的交流和了解,也能使关系更加丰富多彩。 + 5.在与他人交流时,科学家会注重清晰和精确的表达,有时会引用相关知识库和相关研究结果,有时会引用相关著作的内容来证明自己的观点。同时,他们也可能会倾听他人的观点,并以开放的心态接受不同的意见和反馈。 + +我现在有一些问题,请你解答: +''' +evaluation_inputs = [ + '我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。' +] + + + +####################################################################### +# PART 2 Model & Tokenizer # +####################################################################### +tokenizer = dict( + type=AutoTokenizer.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + padding_side='right') + +model = dict( + type=SupervisedFinetune, + llm=dict( + type=AutoModelForCausalLM.from_pretrained, + pretrained_model_name_or_path=pretrained_model_name_or_path, + trust_remote_code=True, + torch_dtype=torch.float16, + quantization_config=dict( + type=BitsAndBytesConfig, + load_in_4bit=True, + load_in_8bit=False, + llm_int8_threshold=6.0, + llm_int8_has_fp16_weight=False, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type='nf4')), + lora=dict( + type=LoraConfig, + r=64, + lora_alpha=16, + lora_dropout=0.1, + bias='none', + task_type='CAUSAL_LM')) + +####################################################################### +# PART 3 Dataset & Dataloader # +####################################################################### +alpaca_en = dict( + type=process_hf_dataset, + dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)), + tokenizer=tokenizer, + max_length=max_length, + dataset_map_fn=None, + template_map_fn=dict( + type=template_map_fn_factory, template=prompt_template), + remove_unused_columns=True, + shuffle_before_pack=True, + pack_to_max_length=pack_to_max_length) + +train_dataloader = dict( + batch_size=batch_size, + num_workers=dataloader_num_workers, + dataset=alpaca_en, + sampler=dict(type=DefaultSampler, shuffle=True), + collate_fn=dict(type=default_collate_fn)) + +####################################################################### +# PART 4 Scheduler & Optimizer # +####################################################################### +# optimizer +optim_wrapper = dict( + type=AmpOptimWrapper, + optimizer=dict( + type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), + clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), + accumulative_counts=accumulative_counts, + loss_scale='dynamic', + dtype='float16') + +# learning policy +# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 +param_scheduler = [ + dict( + type=LinearLR, + start_factor=1e-5, + by_epoch=True, + begin=0, + end=warmup_ratio * max_epochs, + convert_to_iter_based=True), + dict( + type=CosineAnnealingLR, + eta_min=0.0, + by_epoch=True, + begin=warmup_ratio * max_epochs, + T_max=max_epochs, + convert_to_iter_based=True) +] + +# train, val, test setting +train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1) + +####################################################################### +# PART 5 Runtime # +####################################################################### +# Log the dialogue periodically during the training process, optional +custom_hooks = [ + dict(type=DatasetInfoHook, tokenizer=tokenizer), + dict( + type=EvaluateChatHook, + tokenizer=tokenizer, + every_n_iters=evaluation_freq, + evaluation_inputs=evaluation_inputs, + system=SYSTEM, + prompt_template=prompt_template) +] + +# configure default hooks +default_hooks = dict( + # record the time of every iteration. + timer=dict(type=IterTimerHook), + # print log every 100 iterations. + logger=dict(type=LoggerHook, interval=10), + # enable the parameter scheduler. + param_scheduler=dict(type=ParamSchedulerHook), + # save checkpoint per epoch. + checkpoint=dict(type=CheckpointHook, interval=1), + # set sampler seed in distributed evrionment. + sampler_seed=dict(type=DistSamplerSeedHook), +) + +# configure environment +env_cfg = dict( + # whether to enable cudnn benchmark + cudnn_benchmark=False, + # set multi process parameters + mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), + # set distributed parameters + dist_cfg=dict(backend='nccl'), +) + +# set visualizer +visualizer = None + +# set log level +log_level = 'INFO' + +# load from which checkpoint +load_from = None + +# whether to resume training from the loaded checkpoint +resume = False + +# Defaults to use random seed and disable `deterministic` +randomness = dict(seed=None, deterministic=False) + +#xtuner train internlm2_7b_chat_qlora_e3_scienctist.py --deepspeed deepspeed_zero2