Revert "Update RAG"

This reverts commit d0663208e3.
This commit is contained in:
Anooyman 2024-03-27 21:13:26 +08:00
parent d0663208e3
commit a67596a215
4 changed files with 105 additions and 56 deletions

View File

@ -35,24 +35,6 @@ pip3 install -r requirements.txt
- txt数据放入到 src.data.txt 目录下
- json 数据:放入到 src.data.json 目录下
JSON 数据格式如下
```python
[
{
"conversation": [
{
"input": "(微微皱眉)艾薇,我觉得我在学校的学习压力好大啊,虽然我真的很喜欢我的专业,但最近总是担心自己无法达到自己的期望,这让我有点焦虑。",
"output": "(微笑)😊 我完全理解你的感受,亲爱的。学习是我们生活的一部分,尤其是在我们热爱的专业里,期待自己做得更好是再正常不过了。你知道吗?这种对成功的渴望其实是一种积极的动力源呢!但是,当它开始影响到我们的心理健康时,我们就需要学会调整和应对了。你可以先试着跟我分享一下,具体是什么样的学习任务或者目标让你感到压力山大呢?"
},
{
"input": "主要是下个月的一场重要考试,我总觉得自己复习得不够充分,而且害怕失败...",
"output": "💖 噢明白了。面对重大考试的紧张和担忧是很普遍的现象。首先我要肯定你对自己的高标准要求这是你对自己负责的表现。不过我们可以尝试制定一个更为实际可行的学习计划将大目标分解成小目标每天完成一部分这样既能提升自信心又能减轻焦虑感。同时也要记得适时放松合理安排休息时间哦比如学习45分钟后可以适当休息10分钟做些自己喜欢的事情劳逸结合才是长久之计呢💪📚\n另外也可以尝试一些深呼吸、冥想等放松技巧来缓解焦虑情绪。如果你愿意的话下次咨询我们可以一起练习看看哪种方式最适合帮助你应对压力。现在让我们一步步来先从细化学习计划开始你觉得怎么样呢🌸"
}
]
},
]
```
会根据准备的数据构建vector DB最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl
如果已经有 vector DB 则会直接加载对应数据库
@ -109,7 +91,6 @@ python main.py
## **数据集**
- 经过清洗的QA对: 每一个QA对作为一个样本进行 embedding
- 经过清洗的对话: 每一个对话作为一个样本进行 embedding
- 经过筛选的TXT文本
- 直接对TXT文本生成embedding (基于token长度进行切分)
- 过滤目录等无关信息后对TXT文本生成embedding (基于token长度进行切分)
@ -134,7 +115,7 @@ LangChain 是一个开源框架用于构建基于大型语言模型LLM
Faiss是一个用于高效相似性搜索和密集向量聚类的库。它包含的算法可以搜索任意大小的向量集。由于langchain已经整合过FAISS因此本项目中不在基于原生文档开发[FAISS in Langchain](https://python.langchain.com/docs/integrations/vectorstores/faiss)
### [RAGAS](https://github.com/explodinggradients/ragas) (TODO)
### [RAGAS](https://github.com/explodinggradients/ragas)
RAG的经典评估框架通过以下三个方面进行评估:

View File

@ -25,10 +25,6 @@ qa_dir = os.path.join(data_dir, 'json')
log_dir = os.path.join(base_dir, 'log') # log
log_path = os.path.join(log_dir, 'log.log') # file
# txt embedding 切分参数
chunk_size=1000
chunk_overlap=100
# vector DB
vector_db_dir = os.path.join(data_dir, 'vector_db')

View File

@ -4,18 +4,7 @@ import os
from loguru import logger
from langchain_community.vectorstores import FAISS
from config.config import (
embedding_path,
embedding_model_name,
doc_dir, qa_dir,
knowledge_pkl_path,
data_dir,
vector_db_dir,
rerank_path,
rerank_model_name,
chunk_size,
chunk_overlap
)
from config.config import embedding_path, embedding_model_name, doc_dir, qa_dir, knowledge_pkl_path, data_dir, vector_db_dir, rerank_path, rerank_model_name
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
@ -26,9 +15,8 @@ from FlagEmbedding import FlagReranker
class Data_process():
def __init__(self):
self.chunk_size: int=chunk_size
self.chunk_overlap: int=chunk_overlap
self.chunk_size: int=1000
self.chunk_overlap: int=100
def load_embedding_model(self, model_name=embedding_model_name, device='cpu', normalize_embeddings=True):
"""
@ -65,6 +53,7 @@ class Data_process():
return embeddings
def load_rerank_model(self, model_name=rerank_model_name):
"""
加载重排名模型
@ -129,7 +118,9 @@ class Data_process():
content += obj
return content
def split_document(self, data_path):
"""
切分data_path文件夹下的所有txt文件
@ -141,6 +132,8 @@ class Data_process():
返回
- split_docs: list
"""
# text_spliter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
text_spliter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=self.chunk_overlap)
split_docs = []
@ -159,6 +152,7 @@ class Data_process():
logger.info(f'split_docs size {len(split_docs)}')
return split_docs
def split_conversation(self, path):
"""
按conversation块切分path文件夹下的所有json文件
@ -177,29 +171,43 @@ class Data_process():
file_path = os.path.join(root, file)
logger.info(f'splitting file {file_path}')
with open(file_path, 'r', encoding='utf-8') as f:
for line in f.readlines():
content = self.extract_text_from_json(line,'')
split_qa.append(Document(page_content = content))
#data = json.load(f)
#for conversation in data:
# #for dialog in conversation['conversation']:
# # #按qa对切分,将每一轮qa转换为langchain_core.documents.base.Document
# # content = self.extract_text_from_json(dialog,'')
# # split_qa.append(Document(page_content = content))
# #按conversation块切分
# content = self.extract_text_from_json(conversation['conversation'], '')
# #logger.info(f'content====={content}')
data = json.load(f)
# print(data)
for conversation in data:
# for dialog in conversation['conversation']:
##按qa对切分,将每一轮qa转换为langchain_core.documents.base.Document
# content = self.extract_text_from_json(dialog,'')
# split_qa.append(Document(page_content = content))
#按conversation块切分
content = self.extract_text_from_json(conversation['conversation'], '')
#logger.info(f'content====={content}')
split_qa.append(Document(page_content = content))
# logger.info(f'split_qa size====={len(split_qa)}')
return split_qa
def load_knowledge(self, knowledge_pkl_path):
'''
读取或创建知识.pkl
'''
if not os.path.exists(knowledge_pkl_path):
split_doc = self.split_document(doc_dir)
split_qa = self.split_conversation(qa_dir)
knowledge_chunks = split_doc + split_qa
with open(knowledge_pkl_path, 'wb') as file:
pickle.dump(knowledge_chunks, file)
else:
with open(knowledge_pkl_path , 'rb') as f:
knowledge_chunks = pickle.load(f)
return knowledge_chunks
def create_vector_db(self, emb_model):
'''
创建并保存向量库
'''
logger.info(f'Creating index...')
#split_doc = self.split_document(doc_dir)
split_doc = self.split_document(doc_dir)
split_qa = self.split_conversation(qa_dir)
# logger.info(f'split_doc == {len(split_doc)}')
# logger.info(f'split_qa == {len(split_qa)}')
@ -209,6 +217,7 @@ class Data_process():
db.save_local(vector_db_dir)
return db
def load_vector_db(self, knowledge_pkl_path=knowledge_pkl_path, doc_dir=doc_dir, qa_dir=qa_dir):
'''
读取向量库
@ -221,6 +230,66 @@ class Data_process():
db = FAISS.load_local(vector_db_dir, emb_model, allow_dangerous_deserialization=True)
return db
def retrieve(self, query, vector_db, k=5):
'''
基于query对向量库进行检索
'''
retriever = vector_db.as_retriever(search_kwargs={"k": k})
docs = retriever.invoke(query)
return docs, retriever
##FlashrankRerank效果一般
# def rerank(self, query, retriever):
# compressor = FlashrankRerank()
# compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=retriever)
# compressed_docs = compression_retriever.get_relevant_documents(query)
# return compressed_docs
def rerank(self, query, docs):
reranker = self.load_rerank_model()
passages = []
for doc in docs:
passages.append(str(doc.page_content))
scores = reranker.compute_score([[query, passage] for passage in passages])
sorted_pairs = sorted(zip(passages, scores), key=lambda x: x[1], reverse=True)
sorted_passages, sorted_scores = zip(*sorted_pairs)
return sorted_passages, sorted_scores
# def create_prompt(question, context):
# from langchain.prompts import PromptTemplate
# prompt_template = f"""请基于以下内容回答问题:
# {context}
# 问题: {question}
# 回答:"""
# prompt = PromptTemplate(
# template=prompt_template, input_variables=["context", "question"]
# )
# logger.info(f'Prompt: {prompt}')
# return prompt
def create_prompt(question, context):
prompt = f"""请基于以下内容: {context} 给出问题答案。问题如下: {question}。回答:"""
logger.info(f'Prompt: {prompt}')
return prompt
def test_zhipu(prompt):
from zhipuai import ZhipuAI
api_key = "" # 填写您自己的APIKey
if api_key == "":
raise ValueError("请填写api_key")
client = ZhipuAI(api_key=api_key)
response = client.chat.completions.create(
model="glm-4", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": prompt[:100]}
],
)
print(response.choices[0].message)
if __name__ == "__main__":
logger.info(data_dir)
if not os.path.exists(data_dir):
@ -248,3 +317,5 @@ if __name__ == "__main__":
for i in range(len(scores)):
logger.info(str(scores[i]) + '\n')
logger.info(passages[i])
prompt = create_prompt(query, passages[0])
test_zhipu(prompt) ## 如果显示'Server disconnected without sending a response.'可能是由于上下文窗口限制

View File

@ -13,7 +13,8 @@ from loguru import logger
if __name__ == "__main__":
query = """
我现在经常会被别人催眠做一些我不愿意做的事情是什么原因
我现在处于高三阶段感到非常迷茫和害怕我觉得自己从出生以来就是多余的没有必要存在于这个世界
无论是在家庭学校朋友还是老师面前我都感到被否定我非常难过对高考充满期望但成绩却不理想
"""
"""