add base model qlora fintuning config file and optimize deduplicate.py (#128)

This commit is contained in:
xzw 2024-03-23 19:20:17 +08:00 committed by GitHub
commit a12a7ef107
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 1108 additions and 22 deletions

View File

@ -38,7 +38,6 @@
<a href="https://github.com/SmartFlowAI/EmoLLM/issues">提出新特性</a> <a href="https://github.com/SmartFlowAI/EmoLLM/issues">提出新特性</a>
</div> </div>
<!-- 本篇README.md面向开发者 --> <!-- 本篇README.md面向开发者 -->
**EmoLLM** 是一系列能够支持 **理解用户-支持用户-帮助用户** 心理健康辅导链路的心理健康大模型,由 `LLM`指令微调而来欢迎大家star~⭐⭐。目前已经开源的 `LLM` 微调配置如下: **EmoLLM** 是一系列能够支持 **理解用户-支持用户-帮助用户** 心理健康辅导链路的心理健康大模型,由 `LLM`指令微调而来欢迎大家star~⭐⭐。目前已经开源的 `LLM` 微调配置如下:
@ -49,6 +48,7 @@
| :-------------------: | :--------: | | :-------------------: | :--------: |
| InternLM2_7B_chat | QLORA | | InternLM2_7B_chat | QLORA |
| InternLM2_7B_chat | 全量微调 | | InternLM2_7B_chat | 全量微调 |
| InternLM2_7B_base | QLORA |
| InternLM2_1_8B_chat | 全量微调 | | InternLM2_1_8B_chat | 全量微调 |
| InternLM2_20B_chat | LORA | | InternLM2_20B_chat | LORA |
| Qwen_7b_chat | QLORA | | Qwen_7b_chat | QLORA |
@ -110,13 +110,14 @@
</details> </details>
### 🏆荣誉栏 ### 🏆荣誉栏
- 项目荣获上海人工智能实验室举办的**2024浦源大模型系列挑战赛春季赛*****50强*** - 项目荣获上海人工智能实验室举办的**2024浦源大模型系列挑战赛春季赛*****50强***
<p align="center"> <p align="center">
<a href="https://github.com/SmartFlowAI/EmoLLM/"> <a href="https://github.com/SmartFlowAI/EmoLLM/">
<img src="assets/浦语挑战赛TOP50.jpg" alt="浦语挑战赛TOP50"> <img src="assets/浦语挑战赛TOP50.jpg" alt="浦语挑战赛TOP50">
</p> </p>
- 项目荣获公众号**NLP工程化**[推文宣传](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A) - 项目荣获公众号**NLP工程化**[推文宣传](https://mp.weixin.qq.com/s/78lrRl2tlXEKUfElnkVx4A)
### 🎯路线图 ### 🎯路线图
@ -151,9 +152,10 @@
- [如何参与本项目](#如何参与本项目) - [如何参与本项目](#如何参与本项目)
- [作者(排名不分先后)](#作者排名不分先后) - [作者(排名不分先后)](#作者排名不分先后)
- [版权说明](#版权说明) - [版权说明](#版权说明)
- [引用](#引用)
- [特别鸣谢](#特别鸣谢) - [特别鸣谢](#特别鸣谢)
- [Star History](#star-history) - [Star History](#star-history)
- [🌟Contributors](#-contributors) - [🌟 Contributors](#-contributors)
- [交流群](#交流群) - [交流群](#交流群)
###### 开发前的配置要求 ###### 开发前的配置要求
@ -234,7 +236,7 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
| [ZeyuBa](https://github.com/ZeyuBa) | 自动化所在读硕士 | | | | [ZeyuBa](https://github.com/ZeyuBa) | 自动化所在读硕士 | | |
| [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | 宾夕法尼亚大学在读硕士 | | | | [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | 宾夕法尼亚大学在读硕士 | | |
| [Nobody-ML](https://github.com/Nobody-ML) | 中国石油大学(华东)在读本科生 | | | | [Nobody-ML](https://github.com/Nobody-ML) | 中国石油大学(华东)在读本科生 | | |
| [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora/) |MiniSora主要维护| 数据清洗、文档翻译 | | [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora/) |[MiniSora](https://github.com/mini-sora/minisora/)主要维护者,管理员| LLM微调、数据清洗、文档翻译 |
| [Mxoder](https://github.com/Mxoder) | 北京航空航天大学在读本科生 | | | | [Mxoder](https://github.com/Mxoder) | 北京航空航天大学在读本科生 | | |
| [Anooyman](https://github.com/Anooyman) | 南京理工大学硕士 | | | | [Anooyman](https://github.com/Anooyman) | 南京理工大学硕士 | | |
| [Vicky-3021](https://github.com/Vicky-3021) | 西安电子科技大学硕士研0 | | | | [Vicky-3021](https://github.com/Vicky-3021) | 西安电子科技大学硕士研0 | | |
@ -248,8 +250,8 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
该项目签署了 MIT 授权许可,详情请参阅 [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE) 该项目签署了 MIT 授权许可,详情请参阅 [LICENSE](https://github.com/SmartFlowAI/EmoLLM/blob/main/LICENSE)
### 引用 ### 引用
如果本项目对您的工作有所帮助,请使用以下格式引用: 如果本项目对您的工作有所帮助,请使用以下格式引用:
```bibtex ```bibtex
@ -300,7 +302,6 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
[OpenXLab_App-url]: https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0 [OpenXLab_App-url]: https://openxlab.org.cn/apps/detail/Farewell1/EmoLLMV2.0
[OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full [OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full
## 交流群 ## 交流群
- 如果失效请移步Issue区 - 如果失效请移步Issue区

View File

@ -25,7 +25,7 @@
<h3 align="center">EmoLLM</h3> <h3 align="center">EmoLLM</h3>
<p align="center"> <p align="center">
<a href="README.md">简体中文</a> | English <a href="README.md">简体中文</a> | English
<br /> <br />
<br /> <br />
<a href="https://github.com/SmartFlowAI/EmoLLM"><strong>Explore the documentation of this project »</strong></a> <a href="https://github.com/SmartFlowAI/EmoLLM"><strong>Explore the documentation of this project »</strong></a>
@ -42,7 +42,6 @@
<!-- 本篇README.md面向开发者 --> <!-- 本篇README.md面向开发者 -->
**EmoLLM** is a series of large language models designed to understand, support and help customers in mental health counseling. It is fine-tuned from the LLM instructions. We really appreciate it if you could give it a star~⭐⭐. The open-sourced configuration is as follows: **EmoLLM** is a series of large language models designed to understand, support and help customers in mental health counseling. It is fine-tuned from the LLM instructions. We really appreciate it if you could give it a star~⭐⭐. The open-sourced configuration is as follows:
<div align="center"> <div align="center">
@ -51,6 +50,7 @@
| :-------------------: | :------: | | :-------------------: | :------: |
| InternLM2_7B_chat | QLORA | | InternLM2_7B_chat | QLORA |
| InternLM2_7B_chat | full fine-tuning | | InternLM2_7B_chat | full fine-tuning |
| InternLM2_7B_base | QLORA |
| InternLM2_1_8B_chat | full fine-tuning | | InternLM2_1_8B_chat | full fine-tuning |
| InternLM2_20B_chat | LORA | | InternLM2_20B_chat | LORA |
| Qwen_7b_chat | QLORA | | Qwen_7b_chat | QLORA |
@ -90,7 +90,6 @@ The Model aims to fully understand and promote the mental health of individuals,
- 【2024.2.18】 The full fine-tuned version based on Qwen1_5-0_5B-Chat has been [open-sourced](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary). Friends with limited computational resources can now dive in and explore it. - 【2024.2.18】 The full fine-tuned version based on Qwen1_5-0_5B-Chat has been [open-sourced](https://www.modelscope.cn/models/aJupyter/EmoLLM_Qwen1_5-0_5B-Chat_full_sft/summary). Friends with limited computational resources can now dive in and explore it.
<details> <details>
<summary>View More</summary> <summary>View More</summary>
@ -173,8 +172,6 @@ git clone https://github.com/SmartFlowAI/EmoLLM.git
- [Deployment Guide](#deployment-guide) - [Deployment Guide](#deployment-guide)
- View More Details - View More Details
### File Directory Explanation ### File Directory Explanation
``` ```
@ -203,8 +200,8 @@ For details, see the [fine-tuning guide](xtuner_config/README.md)
- Demo deployment: see [deployment guide](./demo/README.md) for details. - Demo deployment: see [deployment guide](./demo/README.md) for details.
- Quantitative deployment based on [LMDeploy](https://github.com/InternLM/lmdeploy/): see [deploy](./deploy/lmdeploy.md) - Quantitative deployment based on [LMDeploy](https://github.com/InternLM/lmdeploy/): see [deploy](./deploy/lmdeploy.md)
### RAG (Retrieval Augmented Generation) Pipeline ### RAG (Retrieval Augmented Generation) Pipeline
- See [RAG](./rag/) - See [RAG](./rag/)
<details> <details>
@ -251,7 +248,7 @@ This project uses Git for version control. You can see the currently available v
| [ZeyuBa](https://github.com/ZeyuBa) | Institute of Automation, Master's student | | | | [ZeyuBa](https://github.com/ZeyuBa) | Institute of Automation, Master's student | | |
| [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | University of Pennsylvania, Master's student | | | | [aiyinyuedejustin](https://github.com/aiyinyuedejustin) | University of Pennsylvania, Master's student | | |
| [Nobody-ML](https://github.com/Nobody-ML) | China University of Petroleum (East China), Undergraduate student | | | | [Nobody-ML](https://github.com/Nobody-ML) | China University of Petroleum (East China), Undergraduate student | | |
| [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora) |Maintainer and Admin| Data Cleaning and Docs Translation | | [chg0901](https://github.com/chg0901) | [MiniSora](https://github.com/mini-sora/minisora) |Maintainer and Admin of [MiniSora](https://github.com/mini-sora/minisora) | LLM Fine-Tuning, Data Cleaning and Docs Translation |
| [Mxoder](https://github.com/Mxoder) | Beihang University, Undergraduate student | | | | [Mxoder](https://github.com/Mxoder) | Beihang University, Undergraduate student | | |
| [Anooyman](https://github.com/Anooyman) | Nanjing University of Science and Technology, Master's student | | | | [Anooyman](https://github.com/Anooyman) | Nanjing University of Science and Technology, Master's student | | |
| [Vicky-3021](https://github.com/Vicky-3021) | Xidian University, Master's student (Research Year 0) | | | | [Vicky-3021](https://github.com/Vicky-3021) | Xidian University, Master's student (Research Year 0) | | |
@ -308,6 +305,7 @@ The project is licensed under the MIT License. Please refer to the details
[OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full [OpenXLab_Model-url]: https://openxlab.org.cn/models/detail/ajupyter/EmoLLM_internlm2_7b_full
## Communication group ## Communication group
- If it fails, go to the Issue section. - If it fails, go to the Issue section.
<p align="center"> <p align="center">

View File

@ -5,6 +5,9 @@ from datasketch import MinHash
from hashlib import md5 from hashlib import md5
from simhash import Simhash from simhash import Simhash
import time
import numpy as np
def extract_text_from_json(obj, content): def extract_text_from_json(obj, content):
# print(content) # print(content)
if isinstance(obj, dict): if isinstance(obj, dict):
@ -29,7 +32,7 @@ def is_duplicate_absolutely(d1, d2):
def hash_dict(dict_obj): def hash_dict(dict_obj):
content = extract_text_from_json(dict_obj,'') content = extract_text_from_json(dict_obj,'')
content = content.replace('\n', '').replace('\t', '').replace(' ', '') content = content.replace('\n', '').replace('\t', '').replace(' ', '')
print(content) # print(content)
# m = get_minhash(content) # m = get_minhash(content)
m = Simhash(content) m = Simhash(content)
return m return m
@ -43,10 +46,19 @@ def get_simhash(dict_obj):
return Simhash(dict_obj) return Simhash(dict_obj)
# 使用绝对匹配和MinHash对dict列表去重 # 使用绝对匹配和MinHash对dict列表去重
def deduplicate_json(data_list, threshold=0.8): def deduplicate_json(data_list, threshold=0.8, time_print=True):
seen_hashes = [] seen_hashes = []
keep = [] keep = []
duplicate = [] duplicate = []
# global start
start = time.time()
last_start_seen_hashes = start
last_start_duplicate = start
stop1 = 0
stop2 = 0
print_interval = 500
for item in data_list: for item in data_list:
if not item['conversation']: if not item['conversation']:
continue continue
@ -60,15 +72,36 @@ def deduplicate_json(data_list, threshold=0.8):
has_similar = False has_similar = False
# for stored_min_hash, stored_text in seen_hashes: # for stored_min_hash, stored_text in seen_hashes:
# if stored_min_hash.jaccard(min_hash) > threshold: # if stored_min_hash.jaccard(min_hash) > threshold:
for stored_min_hash, stored_text in seen_hashes: for stored_min_hash, stored_text in seen_hashes:
if 1 - (stored_min_hash.distance(sim_hash)/64.0) > threshold: if 1 - (stored_min_hash.distance(sim_hash)/64.0) > threshold:
has_similar = True has_similar = True
duplicate.append(item) duplicate.append(item)
print_len_duplicate = len(duplicate)+1
if print_len_duplicate%print_interval == 0:
if time_print:
stop1 = time.time()
print(f'print_len_duplicate={print_len_duplicate} Time: ', np.round(stop1 - last_start_duplicate, 5), np.round(stop1 - start , 5))
last_start_duplicate = stop1
else:
print(f'print_len_duplicate={print_len_duplicate}')
break break
if not has_similar: if not has_similar:
# seen_hashes.append((min_hash,item))
seen_hashes.append((sim_hash,item)) seen_hashes.append((sim_hash,item))
keep.append(item) keep.append(item)
print_len_seen_hashes = len(seen_hashes)+1
if print_len_seen_hashes%print_interval == 0:
if time_print:
stop2 = time.time()
print(f'print_len_seen_hashes={print_len_seen_hashes} Time: ', str(np.round(stop2 - last_start_seen_hashes,5)), str(np.round(stop2 - start, 5)))
last_start_seen_hashes = stop2
else:
print(f'print_len_seen_hashes={print_len_seen_hashes}')
else: else:
duplicate.append(item) duplicate.append(item)
@ -77,7 +110,8 @@ def deduplicate_json(data_list, threshold=0.8):
if __name__ == '__main__': if __name__ == '__main__':
DUP_THRESH = 0.8 DUP_THRESH = 0.8
data_ai = 'qwen' data_ai = 'FatherLikeBF'
# root_dir = rf'./datasets/{data_ai}/'
root_dir = rf'./{data_ai}/' root_dir = rf'./{data_ai}/'
dedup_output_dir = os.path.join(root_dir,'dedup') dedup_output_dir = os.path.join(root_dir,'dedup')
if not os.path.exists(dedup_output_dir): if not os.path.exists(dedup_output_dir):
@ -93,9 +127,14 @@ if __name__ == '__main__':
if is_json_file(file_path): if is_json_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f: with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f) data = json.load(f)
dedup_data, duplicate = deduplicate_json(data, DUP_THRESH) dedup_data, duplicate = deduplicate_json(data, DUP_THRESH)
with open(os.path.join(root_dir, 'dedup','dedup_' + file), 'w', encoding='utf-8') as output_file: with open(os.path.join(root_dir, 'dedup','dedup_' + file), 'w', encoding='utf-8') as output_file:
json.dump(dedup_data, output_file, ensure_ascii=False, indent=4) json.dump(dedup_data, output_file, ensure_ascii=False, indent=4)
with open(os.path.join(root_dir, 'dedup','dup_' + file), 'w', encoding='utf-8') as output_file:
json.dump(duplicate, output_file, ensure_ascii=False, indent=4)
for item in dedup_data: for item in dedup_data:
logger.info(f'dedup_data: {item}') logger.info(f'dedup_data: {item}')
for item in duplicate: for item in duplicate:

View File

@ -1,17 +1,23 @@
import torch import torch
from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import AutoTokenizer, AutoModelForCausalLM
from openxlab.model import download from openxlab.model import download
from modelscope import snapshot_download
download(model_repo='jujimeizuo/EmoLLM_Model', # download model in openxlab
output='model') model_name_or_path =download(model_repo='ajupyter/EmoLLM_internlm2_7b_full',
output='EmoLLM_internlm2_7b_full')
model_name_or_path = "model" # download model in modelscope
model_name_or_path = snapshot_download('chg0901/EmoLLM-InternLM7B-base')
# offline model
# model_name_or_path = "/root/StableCascade/emollm2/EmoLLM/xtuner_config/merged"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto') model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval() model = model.eval()
system_prompt = "你是一个由aJupyter、Farewell、jujimeizuo、Smiling&Weeping研发排名按字母顺序排序不分先后、散步提供技术支持、上海人工智能实验室提供支持开发的心理健康大模型。现在你是一个心理专家我有一些心理问题请你用专业的知识帮我解决。" system_prompt = '你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。'
messages = [(system_prompt, '')] messages = [(system_prompt, '')]

View File

@ -0,0 +1,192 @@
# InternLM2 7B Base QLoRA 微调指南
## 模型基座与配置文件
- 本项目在[**internlm2_7b_chat_qlora_e3**模型](./internlm2_7b_chat_qlora_e3.py)微调[指南](./README.md)的基础上,更新了对[**internlm2_7b_base_qlora_e3配置文件**](./internlm2_7b_base_qlora_e10_M_1e4_32_64.py)**模型**的微调。
## 数据
### 数据集
只采用了通用的数据集不包括带有Role-Play色彩的数据集详情请查看[数据集](../datasets/README.md)页面
| Category | Dataset | Type | Total |
| :---------: | :-------------------: | :----------: | :-----: |
| General | data | Conversation | 5600+ |
| General | data_pro | Conversation | 36500+ |
| General | multi_turn_dataset_1 | Conversation | 36,000+ |
| General | multi_turn_dataset_2 | Conversation | 27,000+ |
| General | single_turn_dataset_1 | QA | 14000+ |
| General | single_turn_dataset_2 | QA | 18300+ |
### 数据集处理
#### 数据格式
训练用的数据,被处理成单轮或者多轮对话的形式,如
```python
[
# 多轮对话
{
"conversation": [
{
"input": "我最近很迷茫,高三后的压力让我感到恐惧,我对自己的存在感到怀疑,您能不能给我一些建议呢?",
"output": "看到你面临的困境与压力,真心希望能够帮助你。首先,我想说的是,你并不是孤独的,高考前的困惑与迷茫是很常见的。不要给自己太大的压力,给自己短暂的放松。你认识到问题所在,这已经是一个很大的进步了。",
"system": "你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。"
},
{
"input": "谢谢您的鼓励,但我觉得自己学习成绩不好,没有进步,这让我更加困惑。",
"output": "学习成绩好坏不是解决问题的关键,专注于自己的进步更为重要。为了达到自己的目标,制定一份合理的计划,按部就班的完成每一项任务。有时候自学不如求助他人,不要害怕问老师和同学问题,以便获得更好的帮助和理解。"
},
{
"input": "我认为我缺乏自信,不知道怎样扭转自己的消极情绪,您能给我一些建议吗?",
"output": "建立自信需要时间和努力。让我们从一点一滴的进步中建立自信心。设立一些具体的目标,完成这些目标将会培养自己的自信。鼓励自己,在每天结束前,总结一下自己的成就,这将帮助你更好的看到自身的优点。"
},
{
"input": "我感到很无助,不知道该如何调整自己的心态。",
"output": "了解自己的情绪并寻找有效的调节方法是处理感到无助情况的关键。比如爱好运动、听音乐和阅读书籍等,这些活动对于您的心理健康都是有积极帮助的。此外,在处理感到无助的情况下,家庭和朋友的支持也是非常关键的。"
},
{
"input": "我感觉我的思维和学习方法都很糟糕,该怎样改进呢?",
"output": "学习方法确实很重要,它会对你的成绩和情绪有很大的影响。最有效的学习方法是利用时间来做练习,多做一些题目,练习自己的掌握能力。建立起对知识的兴趣,这需要不断的积累,不要害怕失败或挫折,它们会成为助你成长的宝贵财富。"
},
{
"input": "我会按照您的建议努力,但想问一下,我该如何面对可能的失败?",
"output": "每个人都会面对失败和挫折,不要让它们打败你。碰到失败时,重新审视自己,分析分析自己的不足,寻找方法去改进。记得勇敢地看向未来,不要让过去的失败阻碍了自己前进的脚步。"
},
{
"input": "非常感谢您的建议和支持,我会努力去实践。",
"output": "这是我应该做的,你有勇气面对自己困难,你并不孤独,我们会一起为你打气,祝愿你早日获得心灵的平静和所有的成功。"
}
]
},
# 单轮对话
{
"conversation": [
{
"system": "你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。",
"input": "一想到事情就紧张……?\n我最近因为考试觉得心情很不好自己没有及格而且明明觉得自己比室友付出的多努力的多平时做题也是一样的可是不知道为什么只有我不及格感觉很苦恼。而且我只要一有什么事情就十分紧张考试也是心跳加速手心出汗而且大脑一片空白有时甚至会头疼高考以及现在的考试都是这样。而且我觉得一情绪激动的时候就会咳嗽想哭哭不出来感觉很难受头也会疼。就是觉得心情不好但是有不敢表现出来。我该怎么办呢",
"output": "为什么不敢表现出来呢?试试表现出来,会怎样?\n有时候我们越抗拒就会越强化。当我们接受了反而症状就消失了。\n那我们要怎样接受呢\n这本书《心灵的七种兵器》推荐看看哦内容精简又有真实事例可以帮助理解。\n我们为什么改不掉这个所谓的坏习惯。\n"
}
]
},
```
### 数据处理
- 使用 `../datasets/process.py` 以处理 **multi_turn_dataset(1 和 2QA数据转单轮对话)** `data.json``data_pro.json` 文件(两个多轮对话),以添加或者调整 **`system` prompt**
- 使用 `../datasets/processed/process_single_turn_conversation_construction.py` 处理 **single-turn dataset** (1 和 2),修改 (`input` 和 `ouput`) ,并在每次 **conversation** 中添加 **`system` prompt**
- 使用 `../datasets/processed/process_merge.py` 用于合并 `../datasets/processed/` 目录下**6个更新后的数据集**,生成一个合并后的数据集 `combined_data.json`用于最终训练
### 数据量与训练epochs设置
- 由于采用了更大的数据集,我们对模型进行了**10 epoch**的训练读者可以根据训练过程中的输出和loss变化进行训练的终止和模型的挑选也可以采用更加专业的评估方法来对模型评测。
- 在我们公布的托管于OpenXlab微调后的 internlm2_7b_chat_qlora微调模型中我们保留了两个版本一个是[5 epoch模型](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base/tree/main),另一个是[10 epoch模型](https://openxlab.org.cn/models/detail/chg0901/EmoLLM-InternLM7B-base-10e/tree/main)版本(**ModelScope**模型:[5 epoch模型](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base/files)和[10 epoch模型](https://www.modelscope.cn/models/chg0901/EmoLLM-InternLM7B-base-10e/files))。
## 基于XTuner的微调🎉🎉🎉🎉🎉
### 环境准备
```markdown
datasets==2.16.1
deepspeed==0.13.1
einops==0.7.0
flash_attn==2.5.0
openxlab==0.0.34
peft==0.7.1
sentencepiece==0.1.99
torch==2.1.2
transformers==4.36.2
mmengine==0.10.3
xtuner==0.1.15
flash_attn==2.5.0
```
也可以一键安装
```bash
cd xtuner_config/
pip install -r requirements.txt
```
温馨提示flash_attn的安装可能需要在本地编译大约需要一到两小时可以去[flash-attention](https://github.com/Dao-AILab/flash-attention/releases)中查找和自己机器配置匹配的whl安装包或者采用InternLM AI studio提供的2.4.2版本whl安装包自行安装
```bash
# from flash-attention
pip install flash_attn-2.5.0+cu122torch2.1cxx11abiTRUE-cp310-cp310-linux_x86_64.whl
# from InternLM AI studio share folder
pip install /root/share/wheels/flash_attn-2.4.2+cu118torch2.0cxx11abiTRUE-cp310-cp310-linux_x86_64.whl
```
---
### 微调
```bash
cd xtuner_config/
xtuner train internlm2_7b_base_qlora_e10_M_1e4_32_64.py --deepspeed deepspeed_zero2
```
---
### 将得到的 PTH 模型转换为 HuggingFace 模型
**即:生成 Adapter 文件夹**
```bash
cd xtuner_config/
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert pth_to_hf internlm2_7b_base_qlora_e10_M_1e4_32_64.py ./work_dirs/internlm2_7b_base_qlora_e10_M_1e4_32_64/epoch_5.pth ./hf
```
---
### 将 HuggingFace adapter 合并到大语言模型
```bash
xtuner convert merge /root/share/model_repos/internlm2-base-7b ./hf ./merged --max-shard-size 2GB
# xtuner convert merge \
# ${NAME_OR_PATH_TO_LLM} \
# ${NAME_OR_PATH_TO_ADAPTER} \
# ${SAVE_PATH} \
# --max-shard-size 2GB
```
### 10 epoch 模型的处理
```bash
cd xtuner_config/
mkdir hf10
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert pth_to_hf internlm2_7b_base_qlora_e10_M_1e4_32_64.py ./work_dirs/internlm2_7b_base_qlora_e10_M_1e4_32_64/epoch_10.pth ./hf
xtuner convert merge /root/share/model_repos/internlm2-base-7b ./hf10 ./merged10 --max-shard-size 2GB
# xtuner convert merge \
# ${NAME_OR_PATH_TO_LLM} \
# ${NAME_OR_PATH_TO_ADAPTER} \
# ${SAVE_PATH} \
# --max-shard-size 2GB
```
---
### 测试
```bash
cd demo/
python cli_internlm2.py
```
---
## 其他
欢迎大家给[xtuner](https://github.com/InternLM/xtuner)和[EmoLLM](https://github.com/aJupyter/EmoLLM)点点star~
🎉🎉🎉🎉🎉

View File

@ -0,0 +1,210 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
# pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b'
pretrained_model_name_or_path = '/root/share/model_repos/internlm2-base-7b'
# Data
# data_path = 'merge.json'
data_path ='/root/StableCascade/emollm2/EmoLLM/datasets/processed/combined_data.json'
# https://github.com/InternLM/xtuner/blob/main/xtuner/utils/templates.py#L24C25-L24C25
prompt_template = PROMPT_TEMPLATE.internlm2_chat # there is No internlm2_base
max_length = 2048
pack_to_max_length = True
# Scheduler & Optimizer
# batch_size = 8 # per_device
# accumulative_counts = 2
batch_size = 16 # per_device
accumulative_counts = 1
dataloader_num_workers = 0
max_epochs = 10
optim_type = AdamW
lr = 1e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Evaluate the generation performance during the training
evaluation_freq = 500
# SYSTEM = "现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
SYSTEM = "你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。"
evaluation_inputs = [
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。',
'我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。',
# ['我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。',
# '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。']
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')
model = dict(
type=SupervisedFinetune,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')),
lora=dict(
type=LoraConfig,
# r=64,
# lora_alpha=16,
r=32,
lora_alpha=64,
# r=16,
# lora_alpha=32,
lora_dropout=0.1,
bias='none',
task_type='CAUSAL_LM'))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=alpaca_en,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
T_max=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per epoch.
checkpoint=dict(type=CheckpointHook, interval=1),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

View File

@ -0,0 +1,205 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
# pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b'
pretrained_model_name_or_path = '/root/share/model_repos/internlm2-base-7b'
# Data
# data_path = 'merge.json'
data_path ='/root/StableCascade/emollm2/EmoLLM/datasets/processed/combined_data.json'
# https://github.com/InternLM/xtuner/blob/main/xtuner/utils/templates.py#L24C25-L24C25
prompt_template = PROMPT_TEMPLATE.internlm2_chat # there is No internlm2_base
max_length = 2048
pack_to_max_length = True
# Scheduler & Optimizer
# batch_size = 8 # per_device
# accumulative_counts = 2
batch_size = 8 # per_device
accumulative_counts = 1
dataloader_num_workers = 0
max_epochs = 10
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Evaluate the generation performance during the training
evaluation_freq = 500
# SYSTEM = "现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
SYSTEM = "你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。"
evaluation_inputs = [
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')
model = dict(
type=SupervisedFinetune,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')),
lora=dict(
type=LoraConfig,
# r=64,
# lora_alpha=16,
r=16,
lora_alpha=32,
lora_dropout=0.1,
bias='none',
task_type='CAUSAL_LM'))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=alpaca_en,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
T_max=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per epoch.
checkpoint=dict(type=CheckpointHook, interval=1),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

View File

@ -0,0 +1,203 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig)
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import template_map_fn_factory
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
# pretrained_model_name_or_path = '/root/share/model_repos/internlm2-chat-7b'
pretrained_model_name_or_path = '/root/share/model_repos/internlm2-base-7b'
# Data
# data_path = 'merge.json'
data_path ='/root/StableCascade/emollm2/EmoLLM/datasets/processed/combined_data.json'
# https://github.com/InternLM/xtuner/blob/main/xtuner/utils/templates.py#L24C25-L24C25
prompt_template = PROMPT_TEMPLATE.internlm2_chat # there is No internlm2_base
max_length = 2048
pack_to_max_length = True
# Scheduler & Optimizer
# batch_size = 8 # per_device
# accumulative_counts = 2
batch_size = 16 # per_device
accumulative_counts = 1
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 1e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Evaluate the generation performance during the training
evaluation_freq = 500
# SYSTEM = "现在你是一个心理专家,我有一些心理问题,请你用专业的知识帮我解决。"
SYSTEM = "你是心理健康助手EmoLLM由EmoLLM团队打造。你旨在通过专业心理咨询协助来访者完成心理诊断。请充分利用专业心理学知识与咨询技术一步步帮助来访者解决心理问题。"
evaluation_inputs = [
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')
model = dict(
type=SupervisedFinetune,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4')),
lora=dict(
type=LoraConfig,
r=32,
lora_alpha=64,
lora_dropout=0.1,
bias='none',
task_type='CAUSAL_LM'))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=alpaca_en,
sampler=dict(type=DefaultSampler, shuffle=True),
collate_fn=dict(type=default_collate_fn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
T_max=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template)
]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per epoch.
checkpoint=dict(type=CheckpointHook, interval=1),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

View File

@ -0,0 +1,222 @@
# Copyright (c) OpenMMLab. All rights reserved.
"""Data format:
[
{
"conversation": [
{
"system": "",
"input": "xxx",
"output": "xxx"
},
{
"input": "xxx",
"output": "xxx"
}
]
},
...
]
Please refer to https://github.com/InternLM/xtuner/blob/main/docs/en/user_guides/dataset_format.md for details.
""" # noqa: E501
from datasets import load_dataset
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
from torch.optim import AdamW
from torch.utils.data import BatchSampler
from transformers import AutoModelForCausalLM, AutoTokenizer
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import template_map_fn_factory
from xtuner.dataset.samplers import InternRepoSampler
from xtuner.engine import (DatasetInfoHook, EvaluateChatHook, ThroughputHook,
VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.utils import PROMPT_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = 'internlm/internlm2-chat-7b'
use_varlen_attn = True
# Data
data_files = ['/path/to/json/file.json']
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 32768
pack_to_max_length = True
# Scheduler & Optimizer
# batch size per device, set to 1 if `use_varlen_attn` = True
# To clarify, enlarging the batch size essentially enlarges the `max_length`.
# For example, doubling the max length is tantamount to doubling the batch size
batch_size = 1
accumulative_counts = 1 # 1bs * 1acc * 64gpu = 64 batchsize
dataloader_num_workers = 4
max_epochs = 1
optim_type = AdamW
lr = 4e-5
betas = (0.9, 0.95)
weight_decay = 0.01
max_norm = 1 # grad clip
warm_up_ratio = 0.025
# Save
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = ''
evaluation_inputs = [
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side='right')
model = dict(
type=SupervisedFinetune,
use_varlen_attn=use_varlen_attn,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True))
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
use_varlen_attn=use_varlen_attn,
dataset=dict(type=load_dataset, path='json', data_files=data_files),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=train_dataset,
sampler=dict(type=InternRepoSampler, shuffle=True, seed=1024),
batch_sampler=dict(
type=BatchSampler, drop_last=True, batch_size=batch_size),
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
)
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type='LinearLR',
start_factor=1 / 40,
by_epoch=True,
begin=0,
end=warm_up_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=lr * 0.15,
by_epoch=True,
begin=warm_up_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]
# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(
type=DatasetInfoHook, tokenizer=tokenizer,
is_intern_repo_dataset=True),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template),
dict(type=ThroughputHook)
]
if use_varlen_attn:
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 100 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=1),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)
# set visualizer
visualizer = None
# set log level
log_level = 'INFO'
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
log_processor = dict(
by_epoch=False,
window_size=1,
mean_pattern=r'.*(loss|time|data_time|grad_norm|tflops).*')

View File

@ -0,0 +1,10 @@
from modelscope.hub.api import HubApi
YOUR_ACCESS_TOKEN = '请从ModelScope个人中心->访问令牌获取'
api = HubApi()
api.login(YOUR_ACCESS_TOKEN)
api.push_model(
model_id="yourname/your_model_id",
model_dir="my_model_dir" # 本地模型目录要求目录中必须包含configuration.json
)