Merge branch 'main' of https://github.com/SmartFlowAI/EmoLLM into main
This commit is contained in:
commit
989b7f4e3f
@ -43,13 +43,9 @@ pip install torch transformers datasets nltk rouge jieba
|
||||
|
||||
## 测试结果
|
||||
|
||||
基于全量微调后的Qwen1_5-0_5B-Chat模型对data.json中的数据进行测试,结果如下:
|
||||
| Metric | Value |
|
||||
|---------|----------------------|
|
||||
| ROUGE-1 | 27.23% |
|
||||
| ROUGE-2 | 8.55% |
|
||||
| ROUGE-L | 17.05% |
|
||||
| BLEU-1 | 26.65% |
|
||||
| BLEU-2 | 13.11% |
|
||||
| BLEU-3 | 7.19% |
|
||||
| BLEU-4 | 4.05% |
|
||||
对data.json中的数据进行测试,结果如下:
|
||||
|
||||
| Model | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 |
|
||||
|----------|---------|---------|---------|---------|---------|---------|---------|
|
||||
| Qwen1_5-0_5B-Chat | 27.23% | 8.55% | 17.05% | 26.65% | 13.11% | 7.19% | 4.05% |
|
||||
| InternLM2_7B_chat | 37.86% | 15.23% | 24.34% | 39.71% | 22.66% | 14.26% | 9.21% |
|
||||
|
111
evaluate/InternLM2_7B_chat_eval.py
Normal file
111
evaluate/InternLM2_7B_chat_eval.py
Normal file
@ -0,0 +1,111 @@
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer,DataCollatorWithPadding
|
||||
from qwen_generation_utils import decode_tokens
|
||||
import torch
|
||||
import datasets
|
||||
|
||||
|
||||
model_dir = './model'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", padding_side='left',trust_remote_code=True)
|
||||
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
|
||||
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto",pad_token_id=tokenizer.eos_token_id, trust_remote_code=True, torch_dtype=torch.float16)
|
||||
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
|
||||
# InternLM 7B in 4bit will cost nearly 8GB GPU memory.
|
||||
# pip install -U bitsandbytes
|
||||
# 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
|
||||
# 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
|
||||
model = model.eval()
|
||||
|
||||
# # convert data
|
||||
# import ujson
|
||||
# def transform_conversation_data(raw_data):
|
||||
# try:
|
||||
# instruction = '<|im_start|>system\n'+raw_data.get("conversation", "")[0]['system'] + "<|im_end|>\n"
|
||||
|
||||
# conversation = raw_data.get("conversation", [])
|
||||
# for i, dialog in enumerate(conversation):
|
||||
# instruction += "<|im_start|>user\n来访者:" + dialog["input"]+ "<|im_end|>\n"
|
||||
|
||||
# if i < len(conversation) - 1:
|
||||
# instruction += "<|im_start|>assistant\n医生:" + dialog["output"]+"<|im_end|>\n"
|
||||
|
||||
# response = conversation[-1]["output"] if conversation else ""
|
||||
|
||||
# instruction +="<|im_start|>assistant\n医生:"
|
||||
|
||||
# return {"instruction": instruction, "output": response}
|
||||
|
||||
# except Exception as e:
|
||||
# pass
|
||||
|
||||
|
||||
# with open(f'./data_dir/data.json', 'r', encoding='utf-8') as f1:
|
||||
# data = ujson.load(f1)
|
||||
# with open(f'./data_dir/converted.json', 'w', encoding='utf-8') as f:
|
||||
# for j, item in enumerate(data):
|
||||
# temp=transform_conversation_data(item)
|
||||
# if temp:
|
||||
# transformed_data =ujson.dumps(temp, ensure_ascii=False)
|
||||
# f.write(transformed_data+'\n')
|
||||
|
||||
#set test params
|
||||
|
||||
|
||||
#set test params
|
||||
test_num=1596 #测试数据条数
|
||||
batch_size=12
|
||||
|
||||
|
||||
#prepare data and dataloader
|
||||
dataset = datasets.load_dataset('json', data_files='./data_dir/converted.json',split=f"train[:{test_num}]")
|
||||
references =dataset['output'][:test_num]
|
||||
|
||||
hypotheses = []
|
||||
def preprocess(data):
|
||||
length = list(map(len, data['instruction']))
|
||||
model_inputs=tokenizer(data['instruction'], max_length=512, truncation=True )
|
||||
labels=tokenizer(data['output'], padding=True,max_length=128, truncation=True )
|
||||
model_inputs['labels']=labels['input_ids']
|
||||
model_inputs['length'] = length
|
||||
return model_inputs
|
||||
preprocessed_dataset = dataset.map(preprocess, batched=True,remove_columns=['instruction', 'output',])
|
||||
|
||||
|
||||
collator=DataCollatorWithPadding(tokenizer=tokenizer,)
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
dataloader = DataLoader(preprocessed_dataset, batch_size=batch_size, collate_fn=collator)
|
||||
|
||||
#generate responses
|
||||
stop_word="<|im_end|>"
|
||||
for batch in dataloader:
|
||||
batch_input_ids = torch.LongTensor(batch['input_ids']).to(model.device)
|
||||
batch_labels = batch['labels']
|
||||
attention_mask = batch['attention_mask']
|
||||
length = batch['length']
|
||||
batch_out_ids = model.generate(
|
||||
batch_input_ids.to(model.device),
|
||||
return_dict_in_generate=False,
|
||||
max_new_tokens=256,
|
||||
do_sample=True,
|
||||
temperature=0.1,
|
||||
eos_token_id=92542
|
||||
)
|
||||
|
||||
padding_lens = [batch_input_ids[i].eq(tokenizer.pad_token_id).sum().item() for i in range(batch_input_ids.size(0))]
|
||||
batch_response = [
|
||||
decode_tokens(
|
||||
batch_out_ids[i][padding_lens[i]:],
|
||||
tokenizer,
|
||||
context_length=0,
|
||||
raw_text_len=length[i],
|
||||
chat_format="raw",
|
||||
verbose=False,
|
||||
errors='replace'
|
||||
).replace("医生:","") for i in range(batch_size)]
|
||||
hypotheses.extend([r.replace(stop_word," ").split()[0] for r in batch_response if stop_word in r])
|
||||
|
||||
|
||||
# Load metric
|
||||
from metric import compute_metrics
|
||||
|
||||
print(compute_metrics((hypotheses,references)))
|
@ -25,7 +25,7 @@ batch_size=12
|
||||
|
||||
|
||||
#prepare data and dataloader
|
||||
dataset = datasets.load_dataset('json', data_files='./train_dir/converted.json',split=f"train[:{test_num}]")
|
||||
dataset = datasets.load_dataset('json', data_files='./data_dir/converted.json',split=f"train[:{test_num}]")
|
||||
references =dataset['output'][:test_num]
|
||||
|
||||
hypotheses = []
|
@ -4,15 +4,10 @@
|
||||
|
||||
* 具体指标、方法见 General evaluation.md
|
||||
|
||||
| Metric | Value |
|
||||
|---------|----------------------|
|
||||
| ROUGE-1 | 27.23% |
|
||||
| ROUGE-2 | 8.55% |
|
||||
| ROUGE-L | 17.05% |
|
||||
| BLEU-1 | 26.65% |
|
||||
| BLEU-2 | 13.11% |
|
||||
| BLEU-3 | 7.19% |
|
||||
| BLEU-4 | 4.05% |
|
||||
| Model | ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 |
|
||||
|----------|---------|---------|---------|---------|---------|---------|---------|
|
||||
| Qwen1_5-0_5B-Chat | 27.23% | 8.55% | 17.05% | 26.65% | 13.11% | 7.19% | 4.05% |
|
||||
| InternLM2_7B_chat | 37.86% | 15.23% | 24.34% | 39.71% | 22.66% | 14.26% | 9.21% |
|
||||
|
||||
## 专业指标评测
|
||||
|
||||
|
@ -18,8 +18,8 @@ def compute_metrics(eval_pred):
|
||||
|
||||
rouge = Rouge()
|
||||
|
||||
bleu =np.array([0,0,0,0])
|
||||
weights = [(1.,0,0,0),(1./2., 1./2.),(1./3., 1./3., 1./3.),(1./4., 1./4., 1./4., 1./4.)]
|
||||
bleu =np.array([0.,0.,0.,0.])
|
||||
weights = [(1.,0.,0.,0.),(1./2., 1./2.),(1./3., 1./3., 1./3.),(1./4., 1./4., 1./4., 1./4.)]
|
||||
for decoded_label, decoded_pred in zip(decoded_labels, decoded_preds):
|
||||
bleu +=np.array( sentence_bleu(
|
||||
references=[decoded_label.split(' ')],
|
||||
|
Loading…
Reference in New Issue
Block a user