Merge branch 'main' of https://github.com/chg0901/EmoLLM
This commit is contained in:
commit
9560663580
@ -57,6 +57,7 @@
|
|||||||
| ChatGLM3_6B | LORA | [chatglm3_6b_lora_alpaca_e3.py](./xtuner_config/chatglm3_6b_lora_alpaca_e3.py) |
|
| ChatGLM3_6B | LORA | [chatglm3_6b_lora_alpaca_e3.py](./xtuner_config/chatglm3_6b_lora_alpaca_e3.py) |
|
||||||
| DeepSeek MoE_16B_chat | QLORA | [deepseek_moe_16b_chat_qlora_oasst1_e3.py](./xtuner_config/deepseek_moe_16b_chat_qlora_oasst1_e3.py) |
|
| DeepSeek MoE_16B_chat | QLORA | [deepseek_moe_16b_chat_qlora_oasst1_e3.py](./xtuner_config/deepseek_moe_16b_chat_qlora_oasst1_e3.py) |
|
||||||
| Mixtral 8x7B_instruct | QLORA | [mixtral_8x7b_instruct_qlora_oasst1_e3.py](./xtuner_config/mixtral_8x7b_instruct_qlora_oasst1_e3.py) |
|
| Mixtral 8x7B_instruct | QLORA | [mixtral_8x7b_instruct_qlora_oasst1_e3.py](./xtuner_config/mixtral_8x7b_instruct_qlora_oasst1_e3.py) |
|
||||||
|
| LLaMA3_8b_instruct | QLORA | [aiwei_llama3_8b_instruct_qlora_e3.py](./xtuner_config/aiwei_llama3_8b_instruct_qlora_e3.py) |
|
||||||
| …… | …… | …… |
|
| …… | …… | …… |
|
||||||
|
|
||||||
</div>
|
</div>
|
||||||
@ -96,7 +97,8 @@
|
|||||||
</table>
|
</table>
|
||||||
|
|
||||||
### 🎇最近更新
|
### 🎇最近更新
|
||||||
|
- 【2024.4.20】[LLAMA3微调指南](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md)及基于[LLaMA3_8b_instruct的艾薇](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei)开源
|
||||||
|
- 【2023.4.14】新增[快速开始](docs/quick_start.md)和保姆级教程[BabyEmoLLM](Baby_EmoLLM.ipynb)
|
||||||
- 【2024.4.2】在 Huggingface 上传[老母亲心理咨询师](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
- 【2024.4.2】在 Huggingface 上传[老母亲心理咨询师](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
||||||
- 【2024.3.25】在百度飞桨平台发布[爹系男友心理咨询师](https://aistudio.baidu.com/community/app/68787)
|
- 【2024.3.25】在百度飞桨平台发布[爹系男友心理咨询师](https://aistudio.baidu.com/community/app/68787)
|
||||||
- 【2024.3.24】在**OpenXLab**和**ModelScope**平台发布**InternLM2-Base-7B QLoRA微调模型**, 具体请查看[**InternLM2-Base-7B QLoRA**](./xtuner_config/README_internlm2_7b_base_qlora.md)
|
- 【2024.3.24】在**OpenXLab**和**ModelScope**平台发布**InternLM2-Base-7B QLoRA微调模型**, 具体请查看[**InternLM2-Base-7B QLoRA**](./xtuner_config/README_internlm2_7b_base_qlora.md)
|
||||||
|
@ -59,6 +59,7 @@
|
|||||||
| ChatGLM3_6B | LORA | [chatglm3_6b_lora_alpaca_e3.py](./xtuner_config/chatglm3_6b_lora_alpaca_e3.py) |
|
| ChatGLM3_6B | LORA | [chatglm3_6b_lora_alpaca_e3.py](./xtuner_config/chatglm3_6b_lora_alpaca_e3.py) |
|
||||||
| DeepSeek MoE_16B_chat | QLORA | [deepseek_moe_16b_chat_qlora_oasst1_e3.py](./xtuner_config/deepseek_moe_16b_chat_qlora_oasst1_e3.py) |
|
| DeepSeek MoE_16B_chat | QLORA | [deepseek_moe_16b_chat_qlora_oasst1_e3.py](./xtuner_config/deepseek_moe_16b_chat_qlora_oasst1_e3.py) |
|
||||||
| Mixtral 8x7B_instruct | QLORA | [mixtral_8x7b_instruct_qlora_oasst1_e3.py](./xtuner_config/mixtral_8x7b_instruct_qlora_oasst1_e3.py) |
|
| Mixtral 8x7B_instruct | QLORA | [mixtral_8x7b_instruct_qlora_oasst1_e3.py](./xtuner_config/mixtral_8x7b_instruct_qlora_oasst1_e3.py) |
|
||||||
|
| LLaMA3_8b_instruct | QLORA | [aiwei_llama3_8b_instruct_qlora_e3.py](./xtuner_config/aiwei_llama3_8b_instruct_qlora_e3.py) |
|
||||||
|
|
|
|
||||||
| …… | …… | …… |
|
| …… | …… | …… |
|
||||||
|
|
||||||
@ -100,6 +101,9 @@ The Model aims to fully understand and promote the mental health of individuals,
|
|||||||
</table>
|
</table>
|
||||||
|
|
||||||
### Recent Updates
|
### Recent Updates
|
||||||
|
- [2024.4.20] [LLAMA3 fine-tuning guide](xtuner_config/README_llama3_8b_instruct_qlora_alpaca_e3_M.md) and based on [LLaMA3_8b_instruct's aiwei](https://openxlab.org.cn/models/detail/ajupyter/EmoLLM-LLaMA3_8b_instruct_aiwei) open source
|
||||||
|
- [2023.4.14] Added [Quick Start](docs/quick_start_EN.md) and Nanny level tutorial [BabyEmoLLM](Baby_EmoLLM.ipynb)
|
||||||
|
- [2024.4.2] Uploaded at Huggingface [Old Mother Counsellor](https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
||||||
- 【2024.3.25】 [Mother-like Therapist] is released on Huggingface (https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
- 【2024.3.25】 [Mother-like Therapist] is released on Huggingface (https://huggingface.co/brycewang2018/EmoLLM-mother/tree/main)
|
||||||
- 【2024.3.25】 [Daddy-like Boy-Friend] is released on Baidu Paddle-Paddle AI Studio Platform (https://aistudio.baidu.com/community/app/68787)
|
- 【2024.3.25】 [Daddy-like Boy-Friend] is released on Baidu Paddle-Paddle AI Studio Platform (https://aistudio.baidu.com/community/app/68787)
|
||||||
- 【2024.3.24】 The **InternLM2-Base-7B QLoRA fine-tuned model** has been released on the **OpenXLab** and **ModelScope** platforms. For more details, please refer to [**InternLM2-Base-7B QLoRA**](./xtuner_config/README_internlm2_7b_base_qlora.md).
|
- 【2024.3.24】 The **InternLM2-Base-7B QLoRA fine-tuned model** has been released on the **OpenXLab** and **ModelScope** platforms. For more details, please refer to [**InternLM2-Base-7B QLoRA**](./xtuner_config/README_internlm2_7b_base_qlora.md).
|
||||||
|
219
xtuner_config/aiwei_llama3_8b_instruct_qlora_e3.py
Normal file
219
xtuner_config/aiwei_llama3_8b_instruct_qlora_e3.py
Normal file
@ -0,0 +1,219 @@
|
|||||||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
from mmengine.dataset import DefaultSampler
|
||||||
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
||||||
|
LoggerHook, ParamSchedulerHook)
|
||||||
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
|
||||||
|
from peft import LoraConfig
|
||||||
|
from torch.optim import AdamW
|
||||||
|
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
||||||
|
BitsAndBytesConfig)
|
||||||
|
|
||||||
|
from xtuner.dataset import process_hf_dataset
|
||||||
|
from xtuner.dataset.collate_fns import default_collate_fn
|
||||||
|
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
|
||||||
|
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,
|
||||||
|
VarlenAttnArgsToMessageHubHook)
|
||||||
|
from xtuner.engine.runner import TrainLoop
|
||||||
|
from xtuner.model import SupervisedFinetune
|
||||||
|
from xtuner.parallel.sequence import SequenceParallelSampler
|
||||||
|
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 1 Settings #
|
||||||
|
#######################################################################
|
||||||
|
# Model
|
||||||
|
pretrained_model_name_or_path = '/root/model/LLM-Research/Meta-Llama-3-8B-Instruct'
|
||||||
|
use_varlen_attn = False
|
||||||
|
|
||||||
|
# Data
|
||||||
|
data_path = './aiwei.json'
|
||||||
|
prompt_template = PROMPT_TEMPLATE.llama3_chat
|
||||||
|
max_length = 2048
|
||||||
|
pack_to_max_length = True
|
||||||
|
|
||||||
|
# parallel
|
||||||
|
sequence_parallel_size = 1
|
||||||
|
|
||||||
|
# Scheduler & Optimizer
|
||||||
|
batch_size = 1 # per_device
|
||||||
|
accumulative_counts = 16
|
||||||
|
accumulative_counts *= sequence_parallel_size
|
||||||
|
dataloader_num_workers = 0
|
||||||
|
max_epochs = 3
|
||||||
|
optim_type = AdamW
|
||||||
|
lr = 2e-4
|
||||||
|
betas = (0.9, 0.999)
|
||||||
|
weight_decay = 0
|
||||||
|
max_norm = 1 # grad clip
|
||||||
|
warmup_ratio = 0.03
|
||||||
|
|
||||||
|
# Save
|
||||||
|
save_steps = 100
|
||||||
|
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
|
||||||
|
|
||||||
|
# Evaluate the generation performance during the training
|
||||||
|
evaluation_freq = 100
|
||||||
|
SYSTEM = "现在你是一个拥有丰富心理学知识的温柔御姐艾薇医生,我有一些心理问题,请你用专业的知识和温柔的口吻帮我解决,可以生成一些可爱的Emoji表情符号或者文本符号。"
|
||||||
|
evaluation_inputs = [
|
||||||
|
'我最近总是感到很焦虑,尤其是在学业上。我有个特别崇拜的同学,他好像在各方面都比我优秀,我总觉得自己怎么努力也追不上他,这让我压力特别大。', '我知道应该理性看待,但就是忍不住会去比较。我甚至晚上会因为这个睡不着觉,总想着怎样才能像他那样出色。'
|
||||||
|
]
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 2 Model & Tokenizer #
|
||||||
|
#######################################################################
|
||||||
|
tokenizer = dict(
|
||||||
|
type=AutoTokenizer.from_pretrained,
|
||||||
|
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
padding_side='right')
|
||||||
|
|
||||||
|
model = dict(
|
||||||
|
type=SupervisedFinetune,
|
||||||
|
use_varlen_attn=use_varlen_attn,
|
||||||
|
llm=dict(
|
||||||
|
type=AutoModelForCausalLM.from_pretrained,
|
||||||
|
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
quantization_config=dict(
|
||||||
|
type=BitsAndBytesConfig,
|
||||||
|
load_in_4bit=True,
|
||||||
|
load_in_8bit=False,
|
||||||
|
llm_int8_threshold=6.0,
|
||||||
|
llm_int8_has_fp16_weight=False,
|
||||||
|
bnb_4bit_compute_dtype=torch.float16,
|
||||||
|
bnb_4bit_use_double_quant=True,
|
||||||
|
bnb_4bit_quant_type='nf4')),
|
||||||
|
lora=dict(
|
||||||
|
type=LoraConfig,
|
||||||
|
r=64,
|
||||||
|
lora_alpha=16,
|
||||||
|
lora_dropout=0.1,
|
||||||
|
bias='none',
|
||||||
|
task_type='CAUSAL_LM'))
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 3 Dataset & Dataloader #
|
||||||
|
#######################################################################
|
||||||
|
alpaca_en = dict(
|
||||||
|
type=process_hf_dataset,
|
||||||
|
dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
max_length=max_length,
|
||||||
|
dataset_map_fn=None,
|
||||||
|
template_map_fn=dict(
|
||||||
|
type=template_map_fn_factory, template=prompt_template),
|
||||||
|
remove_unused_columns=True,
|
||||||
|
shuffle_before_pack=True,
|
||||||
|
pack_to_max_length=pack_to_max_length,
|
||||||
|
use_varlen_attn=use_varlen_attn)
|
||||||
|
|
||||||
|
sampler = SequenceParallelSampler \
|
||||||
|
if sequence_parallel_size > 1 else DefaultSampler
|
||||||
|
train_dataloader = dict(
|
||||||
|
batch_size=batch_size,
|
||||||
|
num_workers=dataloader_num_workers,
|
||||||
|
dataset=alpaca_en,
|
||||||
|
sampler=dict(type=sampler, shuffle=True),
|
||||||
|
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 4 Scheduler & Optimizer #
|
||||||
|
#######################################################################
|
||||||
|
# optimizer
|
||||||
|
optim_wrapper = dict(
|
||||||
|
type=AmpOptimWrapper,
|
||||||
|
optimizer=dict(
|
||||||
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
||||||
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
||||||
|
accumulative_counts=accumulative_counts,
|
||||||
|
loss_scale='dynamic',
|
||||||
|
dtype='float16')
|
||||||
|
|
||||||
|
# learning policy
|
||||||
|
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
||||||
|
param_scheduler = [
|
||||||
|
dict(
|
||||||
|
type=LinearLR,
|
||||||
|
start_factor=1e-5,
|
||||||
|
by_epoch=True,
|
||||||
|
begin=0,
|
||||||
|
end=warmup_ratio * max_epochs,
|
||||||
|
convert_to_iter_based=True),
|
||||||
|
dict(
|
||||||
|
type=CosineAnnealingLR,
|
||||||
|
eta_min=0.0,
|
||||||
|
by_epoch=True,
|
||||||
|
begin=warmup_ratio * max_epochs,
|
||||||
|
end=max_epochs,
|
||||||
|
convert_to_iter_based=True)
|
||||||
|
]
|
||||||
|
|
||||||
|
# train, val, test setting
|
||||||
|
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
||||||
|
|
||||||
|
#######################################################################
|
||||||
|
# PART 5 Runtime #
|
||||||
|
#######################################################################
|
||||||
|
# Log the dialogue periodically during the training process, optional
|
||||||
|
custom_hooks = [
|
||||||
|
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
||||||
|
dict(
|
||||||
|
type=EvaluateChatHook,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
every_n_iters=evaluation_freq,
|
||||||
|
evaluation_inputs=evaluation_inputs,
|
||||||
|
system=SYSTEM,
|
||||||
|
prompt_template=prompt_template)
|
||||||
|
]
|
||||||
|
|
||||||
|
if use_varlen_attn:
|
||||||
|
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
|
||||||
|
|
||||||
|
# configure default hooks
|
||||||
|
default_hooks = dict(
|
||||||
|
# record the time of every iteration.
|
||||||
|
timer=dict(type=IterTimerHook),
|
||||||
|
# print log every 10 iterations.
|
||||||
|
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
||||||
|
# enable the parameter scheduler.
|
||||||
|
param_scheduler=dict(type=ParamSchedulerHook),
|
||||||
|
# save checkpoint per `save_steps`.
|
||||||
|
checkpoint=dict(
|
||||||
|
type=CheckpointHook,
|
||||||
|
by_epoch=False,
|
||||||
|
interval=save_steps,
|
||||||
|
max_keep_ckpts=save_total_limit),
|
||||||
|
# set sampler seed in distributed evrionment.
|
||||||
|
sampler_seed=dict(type=DistSamplerSeedHook),
|
||||||
|
)
|
||||||
|
|
||||||
|
# configure environment
|
||||||
|
env_cfg = dict(
|
||||||
|
# whether to enable cudnn benchmark
|
||||||
|
cudnn_benchmark=False,
|
||||||
|
# set multi process parameters
|
||||||
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||||||
|
# set distributed parameters
|
||||||
|
dist_cfg=dict(backend='nccl'),
|
||||||
|
)
|
||||||
|
|
||||||
|
# set visualizer
|
||||||
|
visualizer = None
|
||||||
|
|
||||||
|
# set log level
|
||||||
|
log_level = 'INFO'
|
||||||
|
|
||||||
|
# load from which checkpoint
|
||||||
|
load_from = None
|
||||||
|
|
||||||
|
# whether to resume training from the loaded checkpoint
|
||||||
|
resume = False
|
||||||
|
|
||||||
|
# Defaults to use random seed and disable `deterministic`
|
||||||
|
randomness = dict(seed=None, deterministic=False)
|
||||||
|
|
||||||
|
# set log processor
|
||||||
|
log_processor = dict(by_epoch=False)
|
Loading…
Reference in New Issue
Block a user