Update RAG README
This commit is contained in:
parent
4473c924f7
commit
88218bfd4b
@ -1,11 +0,0 @@
|
||||
# 清洗 QA 对
|
||||
调用qwen去判断当前QA对是否属于心理学范畴,去除非心理学范畴的 QA 对
|
||||
|
||||
## Step 1
|
||||
1. 准备好需要清洗的 QA 对数据
|
||||
2. 将该数据放进 model 同级 data 文件夹下
|
||||
3. 根据文件夹名去修改 config/config.py 中的 judge_dir。我个人没有对文件名进行更改,所以我的judge_dir是 judge_dir = os.path.join(data_dir, '数据整合')
|
||||
|
||||
## Step 2
|
||||
1. 运行QA_clean.py即可
|
||||
2. 清洗完的 QA 对会以 jsonl 的格式存在 data/cleaned 下
|
@ -93,3 +93,34 @@
|
||||
## **步骤四:清洗QA对**
|
||||
|
||||
- 清洗目的
|
||||
|
||||
- 提高提取的QA数据质量,清理掉与心理学无关的QA对
|
||||
|
||||
- 清洗方法
|
||||
|
||||
- 使用Prompt方法,驱动LLM对给出的QA对进行判断
|
||||
|
||||
- **参考Prompt**
|
||||
|
||||
- ```markdown
|
||||
你是一名经验丰富的心理咨询师,熟悉心理学相关知识。根据我提供的 QA 对,来判断这个 QA 对是否属于心理学范畴。
|
||||
|
||||
标准如下:
|
||||
|
||||
- 若当前 QA 对属于心理学范畴,则返回1
|
||||
- 若当前 QA 对不属于心理学范畴,则返回0
|
||||
|
||||
|
||||
以下是给定的心理学 QA 对内容:
|
||||
```
|
||||
|
||||
- 清洗工具
|
||||
- 配置`config/config.py` 中的 `DASHSCOPE_API_KEY`,`API_KEY`获取方法见步骤三
|
||||
- 使用提供的清洗脚本[QA_Clear](https://github.com/SmartFlowAI/EmoLLM/blob/main/scripts/qa_generation/QA_clean.py)
|
||||
|
||||
- 使用方法
|
||||
- 准备好需要清洗的 QA 对数据
|
||||
- 将该数据放进 model 同级 data 文件夹下
|
||||
- 根据文件夹名去修改 `config/config.py` 中的 `judge_dir`。
|
||||
- 如存储数据的文件名为`xxx`,则`judge_dir`是 `judge_dir = os.path.join(data_dir, 'xxx')`
|
||||
- 清洗完的 QA 对会以 `jsonl` 的格式存在 `data/cleaned` 下
|
||||
|
@ -93,3 +93,40 @@ Using books specialized in psychology to build QA knowledge pairs for RAG to pro
|
||||
## **Step 4: Cleaning of QA pairs**
|
||||
|
||||
- Purpose of cleaning
|
||||
- Improve the quality of extracted QA data and clean out QA pairs that are not relevant to psychology
|
||||
|
||||
- Cleaning Methods
|
||||
|
||||
- Use the Prompt method to drive the LLM to make a judgment on the given QA pairs
|
||||
|
||||
- **Reference to Prompt**
|
||||
|
||||
- ```markdown
|
||||
You are an experienced counselor and are familiar with psychology. Based on the QA pair I have provided, determine if this QA pair is psychological in nature.
|
||||
|
||||
The criteria are as follows:
|
||||
|
||||
- If the current QA pair belongs to the category of psychology, then return 1
|
||||
- If the current QA pair does not belong to the category of psychology, then return 0.
|
||||
|
||||
|
||||
The following is the content of the given psychology QA pair:
|
||||
```
|
||||
|
||||
- Cleaning Tools
|
||||
|
||||
- Configure `DASHSCOPE_API_KEY` in `config/config.py`, see step 3 for how to get `API_KEY`.
|
||||
|
||||
- Use the provided cleaning script [QA_Clear](https://github.com/SmartFlowAI/EmoLLM/blob/main/scripts/qa_generation/QA_clean.py)
|
||||
|
||||
- How to use
|
||||
|
||||
- Prepare the QA pair data to be cleaned
|
||||
|
||||
- Put the data into the data folder of the same level as the model.
|
||||
|
||||
- Modify `judge_dir` in `config/config.py` according to the folder name.
|
||||
|
||||
- If the file name of the stored data is `xxx`, then `judge_dir` is `judge_dir = os.path.join(data_dir, 'xxx')`.
|
||||
|
||||
- The cleaned QA pairs are stored as `jsonl` under `data/cleaned`.
|
||||
|
Loading…
Reference in New Issue
Block a user