This commit is contained in:
HongCheng 2024-05-04 12:18:32 +09:00
commit 85c36244ad
6 changed files with 267 additions and 18 deletions

View File

@ -19,6 +19,8 @@ langchain_openai==0.0.8
langchain_text_splitters==0.0.1
FlagEmbedding==1.2.8
unstructured==0.12.6
PyJWT
faiss-gpu # faiss-cpu for device without gpu
```
```python
@ -32,10 +34,18 @@ pip3 install -r requirements.txt
### 准备数据
- txt数据放入到 src.data.txt 目录下
- json 数据:放入到 src.data.json 目录下
#### 搭建自己的 Vector DB
##### TXT 数据
将需要构建的知识库转化为 Txt 文件放入到 src.data.txt 目录下
##### JSON 数据
构建 QA 对并生成 JSON 文件(多轮对话),放入到 src.data.json 目录下
数据格式如下
JSON 数据格式如下
```python
[
{
@ -53,18 +63,23 @@ JSON 数据格式如下
]
```
会根据准备的数据构建vector DB最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl
会根据准备的数据构建 vector DB最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl。如果已经有 vector DB 则会直接加载对应数据库
如果已经有 vector DB 则会直接加载对应数据库
- 可以直接从 xlab 下载对应 DB请在rag文件目录下执行对应 code
**注意**: 可以直接从 xlab 下载对应 DB请在rag文件目录下执行对应 code
```python
# https://openxlab.org.cn/models/detail/Anooyman/EmoLLMRAGTXT/tree/main
git lfs install
git clone https://code.openxlab.org.cn/Anooyman/EmoLLMRAGTXT.git
```
- 也可以从魔塔社区下载对应数据集
```python
# https://www.modelscope.cn/datasets/Anooyman/EmoLLMRAGTXT/summary
git clone https://www.modelscope.cn/datasets/Anooyman/EmoLLMRAGTXT.git
```
### 配置 config 文件
@ -106,7 +121,50 @@ prompt_template = """
"""
```
### 调用
### 本地调用
*注意*
由于 RAG code 已经集成到 `web_internlm2.py`import 路径不再适用于本地调用
因此需要如下调整对应 import 路径
- src/data_processing.py
```python
#from rag.src.config.config import (
# embedding_path,
# embedding_model_name,
# doc_dir, qa_dir,
# knowledge_pkl_path,
# data_dir,
# vector_db_dir,
# rerank_path,
# rerank_model_name,
# chunk_size,
# chunk_overlap
#)
from config.config import (
embedding_path,
embedding_model_name,
doc_dir, qa_dir,
knowledge_pkl_path,
data_dir,
vector_db_dir,
rerank_path,
rerank_model_name,
chunk_size,
chunk_overlap
)
```
- src/pipeline.py
```python
#from rag.src.data_processing import Data_process
#from rag.src.config.config import prompt_template
from data_processing import Data_process
from config.config import prompt_template
```
修改 import 路径之后通过以下 code 执行
```python
cd rag/src
@ -128,6 +186,13 @@ python main.py
## **相关组件**
这里我们提供了BGE和BCEmbedding两种组合方式更加推荐性能更加优异的BGE
### [BGE Github](https://github.com/FlagOpen/FlagEmbedding)
- [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5): embedding 模型,用于构建 vector DB
- [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large): rerank 模型,用于对检索回来的文章段落重排
### [BCEmbedding](https://github.com/netease-youdao/BCEmbedding?tab=readme-ov-file)
- [bce-embedding-base_v1](https://hf-mirror.com/maidalun1020/bce-embedding-base_v1): embedding 模型,用于构建 vector DB
@ -157,13 +222,13 @@ RAG的经典评估框架通过以下三个方面进行评估:
### RAG具体流程
- 根据数据集构建vector DB
- 对用户输入的问题进行embedding
- 基于embedding结果在向量数据库中进行检索
- 根据数据集构建 vector DB
- 对用户输入的问题进行 embedding
- 基于 embedding 结果在向量数据库中进行检索
- 对召回数据重排序
- 依据用户问题和召回数据生成最后的结果
**Noted**: 当用户选择使用RAG时才会进行上述流程
**Note**: 当用户选择使用RAG时才会进行上述流程
### 后续增强

View File

@ -23,6 +23,13 @@ For details on data collection construction, please refer to [qa_generation_READ
## **Components**
There are two sets of embedding and rerank solutions, i.e., the BGE and BCE, we recommend to use the more powerful **BGE** !
### [BGE Github](https://github.com/FlagOpen/FlagEmbedding)
- [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5): embedding model, used to build vector DB
- [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large): rerank model, used to rerank retrieved documents
### [BCEmbedding](https://github.com/netease-youdao/BCEmbedding?tab=readme-ov-file)
- [bce-embedding-base_v1](https://hf-mirror.com/maidalun1020/bce-embedding-base_v1): embedding model, used to build vector DB
@ -63,4 +70,4 @@ Later, more evaluation indicators were added, such as: context recall, etc.
- Add RAGAS evaluation results to the generation process. For example, when the generated results cannot solve the user's problem, it needs to be regenerated.
- Add web retrieval to deal with the problem that the corresponding information cannot be retrieved in vector DB
- Add multi-channel retrieval to increase recall rate. That is, multiple similar queries are generated based on user input for retrieval.
- Add multi-channel retrieval to increase recall rate. That is, multiple similar queries are generated based on user input for retrieval.

94
rag/pdf2md/README.md Normal file
View File

@ -0,0 +1,94 @@
# PDF2MD for RAG
## 使用api_key使用PDF2MD
通过使用doc2x的库实现将pdf文件转换为结构化md文档。
通过代码调用(需要提供api_key)
~~~python
import requests as rq
import json
import os
import zipfile
class PDF2MD:
def __init__(self, api_key):
self.api_key = api_key
self.url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
self.export_url = "https://api.doc2x.noedgeai.com/api/export"
def convert(self, filepath, to="md"):
filename = os.path.splitext(os.path.basename(filepath))[0]
res = rq.post(self.url, files={"file": open(filepath, "rb")}, headers={"Authorization": "Bearer " + self.api_key}, stream=True)
if res.status_code == 200:
txt_path = filename + ".txt"
with open(txt_path, "w", encoding="utf-8") as f:
for line in res.iter_lines():
if len(line) > 0:
decoded_line = line.decode("utf-8")
f.write(decoded_line + "\n")
print(decoded_line)
uuid = json.loads(decoded_line.replace("data: ", ''))['uuid']
print(uuid)
if to == "md" or to == 'latex':
path = filename + '.zip'
elif to == 'docx':
path = filename + '.docx'
export_url = self.export_url + "?request_id=" + uuid + "&to=" + to
res = rq.get(export_url, headers={"Authorization": "Bearer " + self.api_key})
if res.status_code == 200:
with open(path, "wb") as f:
f.write(res.content)
print("下载成功,存入:", path)
if to == "md" or to == 'latex':
zip_file = zipfile.ZipFile(path)
# 创建以原始文件名命名的文件夹
if not os.path.exists(filename):
os.mkdir(filename)
# 解压到该文件夹内
for names in zip_file.namelist():
zip_file.extract(names, filename)
zip_file.close()
# 找到解压后的md文件
for file in os.listdir(filename):
if file.endswith(".md"):
extracted_md = os.path.join(filename, file)
break
# 重命名md文件
new_md_name = os.path.join(filename, filename+'.md')
os.rename(extracted_md, new_md_name)
print("解压并重命名md文件为:", new_md_name)
else:
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
else:
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
def main():
api_key = "sk-xxx"
filepath = r"test.pdf"
converter = PDF2MD(api_key)
converter.convert(filepath, to="md")
if __name__ == "__main__":
main()
~~~
## 通过网页使用在线PDF2MD服务
doc2x在线服务地址https://doc2x.noedgeai.com

81
rag/pdf2md/pdf2md.py Normal file
View File

@ -0,0 +1,81 @@
import requests as rq
import json
import os
import zipfile
class PDF2MD:
def __init__(self, api_key):
self.api_key = api_key
self.url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
self.export_url = "https://api.doc2x.noedgeai.com/api/export"
def convert(self, filepath, to="md"):
filename = os.path.splitext(os.path.basename(filepath))[0]
res = rq.post(self.url, files={"file": open(filepath, "rb")},
headers={"Authorization": "Bearer " + self.api_key}, stream=True)
if res.status_code == 200:
txt_path = filename + ".txt"
with open(txt_path, "w", encoding="utf-8") as f:
for line in res.iter_lines():
if len(line) > 0:
decoded_line = line.decode("utf-8")
f.write(decoded_line + "\n")
print(decoded_line)
uuid = json.loads(decoded_line.replace("data: ", ''))['uuid']
print(uuid)
if to == "md" or to == 'latex':
path = filename + '.zip'
elif to == 'docx':
path = filename + '.docx'
export_url = self.export_url + "?request_id=" + uuid + "&to=" + to
res = rq.get(export_url, headers={"Authorization": "Bearer " + self.api_key})
if res.status_code == 200:
with open(path, "wb") as f:
f.write(res.content)
print("下载成功,存入:", path)
if to == "md" or to == 'latex':
zip_file = zipfile.ZipFile(path)
# 创建以原始文件名命名的文件夹
if not os.path.exists(filename):
os.mkdir(filename)
# 解压到该文件夹内
for names in zip_file.namelist():
zip_file.extract(names, filename)
zip_file.close()
# 找到解压后的md文件
for file in os.listdir(filename):
if file.endswith(".md"):
extracted_md = os.path.join(filename, file)
break
# 重命名md文件
new_md_name = os.path.join(filename, filename + '.md')
os.rename(extracted_md, new_md_name)
print("解压并重命名md文件为:", new_md_name)
else:
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
else:
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
def main():
api_key = "sk-xxx"
filepath = r"test.pdf"
converter = PDF2MD(api_key)
converter.convert(filepath, to="md")
if __name__ == "__main__":
main()

View File

@ -9,4 +9,6 @@ langchain_core==0.1.33
langchain_openai==0.0.8
langchain_text_splitters==0.0.1
FlagEmbedding==1.2.8
unstructured==0.12.6
unstructured==0.12.6
PyJWT
faiss-gpu # faiss-cpu for device without gpu

View File

@ -145,9 +145,9 @@ class Data_process():
split_docs = []
logger.info(f'Loading txt files from {data_path}')
if os.path.isdir(data_path):
loader = DirectoryLoader(data_path, glob="**/*.txt",show_progress=True)
docs = loader.load()
split_docs = text_spliter.split_documents(docs)
loader = DirectoryLoader(data_path, glob="**/*.txt",show_progress=True)
docs = loader.load()
split_docs = text_spliter.split_documents(docs)
elif data_path.endswith('.txt'):
file_path = data_path
logger.info(f'splitting file {file_path}')
@ -246,4 +246,4 @@ if __name__ == "__main__":
logger.info("After reranking...")
for i in range(len(scores)):
logger.info(str(scores[i]) + '\n')
logger.info(passages[i])
logger.info(passages[i])