Merge branch 'main' of https://github.com/chg0901/EmoLLM
This commit is contained in:
commit
85c36244ad
@ -19,6 +19,8 @@ langchain_openai==0.0.8
|
||||
langchain_text_splitters==0.0.1
|
||||
FlagEmbedding==1.2.8
|
||||
unstructured==0.12.6
|
||||
PyJWT
|
||||
faiss-gpu # faiss-cpu for device without gpu
|
||||
```
|
||||
|
||||
```python
|
||||
@ -32,10 +34,18 @@ pip3 install -r requirements.txt
|
||||
|
||||
### 准备数据
|
||||
|
||||
- txt数据:放入到 src.data.txt 目录下
|
||||
- json 数据:放入到 src.data.json 目录下
|
||||
#### 搭建自己的 Vector DB
|
||||
|
||||
##### TXT 数据
|
||||
|
||||
将需要构建的知识库转化为 Txt 文件放入到 src.data.txt 目录下
|
||||
|
||||
##### JSON 数据
|
||||
|
||||
构建 QA 对并生成 JSON 文件(多轮对话),放入到 src.data.json 目录下
|
||||
|
||||
数据格式如下
|
||||
|
||||
JSON 数据格式如下
|
||||
```python
|
||||
[
|
||||
{
|
||||
@ -53,18 +63,23 @@ JSON 数据格式如下
|
||||
]
|
||||
```
|
||||
|
||||
会根据准备的数据构建vector DB,最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl
|
||||
会根据准备的数据构建 vector DB,最终会在 data 文件夹下产生名为 vector_db 的文件夹包含 index.faiss 和 index.pkl。如果已经有 vector DB 则会直接加载对应数据库
|
||||
|
||||
如果已经有 vector DB 则会直接加载对应数据库
|
||||
- 可以直接从 xlab 下载对应 DB(请在rag文件目录下执行对应 code)
|
||||
|
||||
|
||||
**注意**: 可以直接从 xlab 下载对应 DB(请在rag文件目录下执行对应 code)
|
||||
```python
|
||||
# https://openxlab.org.cn/models/detail/Anooyman/EmoLLMRAGTXT/tree/main
|
||||
git lfs install
|
||||
git clone https://code.openxlab.org.cn/Anooyman/EmoLLMRAGTXT.git
|
||||
```
|
||||
|
||||
- 也可以从魔塔社区下载对应数据集
|
||||
|
||||
```python
|
||||
# https://www.modelscope.cn/datasets/Anooyman/EmoLLMRAGTXT/summary
|
||||
git clone https://www.modelscope.cn/datasets/Anooyman/EmoLLMRAGTXT.git
|
||||
```
|
||||
|
||||
|
||||
### 配置 config 文件
|
||||
|
||||
@ -106,7 +121,50 @@ prompt_template = """
|
||||
"""
|
||||
```
|
||||
|
||||
### 调用
|
||||
### 本地调用
|
||||
|
||||
*注意*
|
||||
由于 RAG code 已经集成到 `web_internlm2.py` 中,import 路径不再适用于本地调用
|
||||
因此需要如下调整对应 import 路径
|
||||
|
||||
- src/data_processing.py
|
||||
```python
|
||||
#from rag.src.config.config import (
|
||||
# embedding_path,
|
||||
# embedding_model_name,
|
||||
# doc_dir, qa_dir,
|
||||
# knowledge_pkl_path,
|
||||
# data_dir,
|
||||
# vector_db_dir,
|
||||
# rerank_path,
|
||||
# rerank_model_name,
|
||||
# chunk_size,
|
||||
# chunk_overlap
|
||||
#)
|
||||
from config.config import (
|
||||
embedding_path,
|
||||
embedding_model_name,
|
||||
doc_dir, qa_dir,
|
||||
knowledge_pkl_path,
|
||||
data_dir,
|
||||
vector_db_dir,
|
||||
rerank_path,
|
||||
rerank_model_name,
|
||||
chunk_size,
|
||||
chunk_overlap
|
||||
)
|
||||
```
|
||||
|
||||
- src/pipeline.py
|
||||
```python
|
||||
#from rag.src.data_processing import Data_process
|
||||
#from rag.src.config.config import prompt_template
|
||||
|
||||
from data_processing import Data_process
|
||||
from config.config import prompt_template
|
||||
```
|
||||
|
||||
修改 import 路径之后通过以下 code 执行
|
||||
|
||||
```python
|
||||
cd rag/src
|
||||
@ -128,6 +186,13 @@ python main.py
|
||||
|
||||
## **相关组件**
|
||||
|
||||
这里我们提供了BGE和BCEmbedding两种组合方式,更加推荐性能更加优异的BGE
|
||||
|
||||
### [BGE Github](https://github.com/FlagOpen/FlagEmbedding)
|
||||
|
||||
- [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5): embedding 模型,用于构建 vector DB
|
||||
- [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large): rerank 模型,用于对检索回来的文章段落重排
|
||||
|
||||
### [BCEmbedding](https://github.com/netease-youdao/BCEmbedding?tab=readme-ov-file)
|
||||
|
||||
- [bce-embedding-base_v1](https://hf-mirror.com/maidalun1020/bce-embedding-base_v1): embedding 模型,用于构建 vector DB
|
||||
@ -157,13 +222,13 @@ RAG的经典评估框架,通过以下三个方面进行评估:
|
||||
|
||||
### RAG具体流程
|
||||
|
||||
- 根据数据集构建vector DB
|
||||
- 对用户输入的问题进行embedding
|
||||
- 基于embedding结果在向量数据库中进行检索
|
||||
- 根据数据集构建 vector DB
|
||||
- 对用户输入的问题进行 embedding
|
||||
- 基于 embedding 结果在向量数据库中进行检索
|
||||
- 对召回数据重排序
|
||||
- 依据用户问题和召回数据生成最后的结果
|
||||
|
||||
**Noted**: 当用户选择使用RAG时才会进行上述流程
|
||||
**Note**: 当用户选择使用RAG时才会进行上述流程
|
||||
|
||||
### 后续增强
|
||||
|
||||
|
@ -23,6 +23,13 @@ For details on data collection construction, please refer to [qa_generation_READ
|
||||
|
||||
## **Components**
|
||||
|
||||
There are two sets of embedding and rerank solutions, i.e., the BGE and BCE, we recommend to use the more powerful **BGE** !
|
||||
|
||||
### [BGE Github](https://github.com/FlagOpen/FlagEmbedding)
|
||||
|
||||
- [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5): embedding model, used to build vector DB
|
||||
- [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large): rerank model, used to rerank retrieved documents
|
||||
|
||||
### [BCEmbedding](https://github.com/netease-youdao/BCEmbedding?tab=readme-ov-file)
|
||||
|
||||
- [bce-embedding-base_v1](https://hf-mirror.com/maidalun1020/bce-embedding-base_v1): embedding model, used to build vector DB
|
||||
|
94
rag/pdf2md/README.md
Normal file
94
rag/pdf2md/README.md
Normal file
@ -0,0 +1,94 @@
|
||||
# PDF2MD for RAG
|
||||
|
||||
## 使用api_key使用PDF2MD
|
||||
|
||||
通过使用doc2x的库,实现将pdf文件转换为结构化md文档。
|
||||
|
||||
通过代码调用(需要提供api_key):
|
||||
|
||||
~~~python
|
||||
import requests as rq
|
||||
import json
|
||||
import os
|
||||
import zipfile
|
||||
|
||||
class PDF2MD:
|
||||
def __init__(self, api_key):
|
||||
self.api_key = api_key
|
||||
self.url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
||||
self.export_url = "https://api.doc2x.noedgeai.com/api/export"
|
||||
|
||||
def convert(self, filepath, to="md"):
|
||||
filename = os.path.splitext(os.path.basename(filepath))[0]
|
||||
|
||||
res = rq.post(self.url, files={"file": open(filepath, "rb")}, headers={"Authorization": "Bearer " + self.api_key}, stream=True)
|
||||
|
||||
if res.status_code == 200:
|
||||
txt_path = filename + ".txt"
|
||||
with open(txt_path, "w", encoding="utf-8") as f:
|
||||
for line in res.iter_lines():
|
||||
if len(line) > 0:
|
||||
decoded_line = line.decode("utf-8")
|
||||
f.write(decoded_line + "\n")
|
||||
print(decoded_line)
|
||||
|
||||
uuid = json.loads(decoded_line.replace("data: ", ''))['uuid']
|
||||
print(uuid)
|
||||
|
||||
if to == "md" or to == 'latex':
|
||||
path = filename + '.zip'
|
||||
elif to == 'docx':
|
||||
path = filename + '.docx'
|
||||
|
||||
export_url = self.export_url + "?request_id=" + uuid + "&to=" + to
|
||||
res = rq.get(export_url, headers={"Authorization": "Bearer " + self.api_key})
|
||||
|
||||
if res.status_code == 200:
|
||||
with open(path, "wb") as f:
|
||||
f.write(res.content)
|
||||
print("下载成功,存入:", path)
|
||||
|
||||
if to == "md" or to == 'latex':
|
||||
zip_file = zipfile.ZipFile(path)
|
||||
|
||||
# 创建以原始文件名命名的文件夹
|
||||
if not os.path.exists(filename):
|
||||
os.mkdir(filename)
|
||||
|
||||
# 解压到该文件夹内
|
||||
for names in zip_file.namelist():
|
||||
zip_file.extract(names, filename)
|
||||
zip_file.close()
|
||||
|
||||
# 找到解压后的md文件
|
||||
for file in os.listdir(filename):
|
||||
if file.endswith(".md"):
|
||||
extracted_md = os.path.join(filename, file)
|
||||
break
|
||||
|
||||
# 重命名md文件
|
||||
new_md_name = os.path.join(filename, filename+'.md')
|
||||
os.rename(extracted_md, new_md_name)
|
||||
print("解压并重命名md文件为:", new_md_name)
|
||||
|
||||
else:
|
||||
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
else:
|
||||
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
api_key = "sk-xxx"
|
||||
filepath = r"test.pdf"
|
||||
converter = PDF2MD(api_key)
|
||||
converter.convert(filepath, to="md")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
~~~
|
||||
|
||||
## 通过网页使用在线PDF2MD服务:
|
||||
|
||||
doc2x在线服务地址:https://doc2x.noedgeai.com
|
81
rag/pdf2md/pdf2md.py
Normal file
81
rag/pdf2md/pdf2md.py
Normal file
@ -0,0 +1,81 @@
|
||||
import requests as rq
|
||||
import json
|
||||
import os
|
||||
import zipfile
|
||||
|
||||
|
||||
class PDF2MD:
|
||||
def __init__(self, api_key):
|
||||
self.api_key = api_key
|
||||
self.url = "https://api.doc2x.noedgeai.com/api/v1/pdf"
|
||||
self.export_url = "https://api.doc2x.noedgeai.com/api/export"
|
||||
|
||||
def convert(self, filepath, to="md"):
|
||||
filename = os.path.splitext(os.path.basename(filepath))[0]
|
||||
|
||||
res = rq.post(self.url, files={"file": open(filepath, "rb")},
|
||||
headers={"Authorization": "Bearer " + self.api_key}, stream=True)
|
||||
|
||||
if res.status_code == 200:
|
||||
txt_path = filename + ".txt"
|
||||
with open(txt_path, "w", encoding="utf-8") as f:
|
||||
for line in res.iter_lines():
|
||||
if len(line) > 0:
|
||||
decoded_line = line.decode("utf-8")
|
||||
f.write(decoded_line + "\n")
|
||||
print(decoded_line)
|
||||
|
||||
uuid = json.loads(decoded_line.replace("data: ", ''))['uuid']
|
||||
print(uuid)
|
||||
|
||||
if to == "md" or to == 'latex':
|
||||
path = filename + '.zip'
|
||||
elif to == 'docx':
|
||||
path = filename + '.docx'
|
||||
|
||||
export_url = self.export_url + "?request_id=" + uuid + "&to=" + to
|
||||
res = rq.get(export_url, headers={"Authorization": "Bearer " + self.api_key})
|
||||
|
||||
if res.status_code == 200:
|
||||
with open(path, "wb") as f:
|
||||
f.write(res.content)
|
||||
print("下载成功,存入:", path)
|
||||
|
||||
if to == "md" or to == 'latex':
|
||||
zip_file = zipfile.ZipFile(path)
|
||||
|
||||
# 创建以原始文件名命名的文件夹
|
||||
if not os.path.exists(filename):
|
||||
os.mkdir(filename)
|
||||
|
||||
# 解压到该文件夹内
|
||||
for names in zip_file.namelist():
|
||||
zip_file.extract(names, filename)
|
||||
zip_file.close()
|
||||
|
||||
# 找到解压后的md文件
|
||||
for file in os.listdir(filename):
|
||||
if file.endswith(".md"):
|
||||
extracted_md = os.path.join(filename, file)
|
||||
break
|
||||
|
||||
# 重命名md文件
|
||||
new_md_name = os.path.join(filename, filename + '.md')
|
||||
os.rename(extracted_md, new_md_name)
|
||||
print("解压并重命名md文件为:", new_md_name)
|
||||
|
||||
else:
|
||||
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
else:
|
||||
print(format("[ERROR] status code: %d, body: %s" % (res.status_code, res.text)))
|
||||
|
||||
|
||||
def main():
|
||||
api_key = "sk-xxx"
|
||||
filepath = r"test.pdf"
|
||||
converter = PDF2MD(api_key)
|
||||
converter.convert(filepath, to="md")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -10,3 +10,5 @@ langchain_openai==0.0.8
|
||||
langchain_text_splitters==0.0.1
|
||||
FlagEmbedding==1.2.8
|
||||
unstructured==0.12.6
|
||||
PyJWT
|
||||
faiss-gpu # faiss-cpu for device without gpu
|
||||
|
Loading…
Reference in New Issue
Block a user